期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
An Improved Granulated Convolutional Neural Network Data Analysis Model for COVID-19 Prediction
1
作者 Meilin Wu Lianggui Tang +1 位作者 Qingda Zhang Ke Yan 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期179-198,共20页
As COVID-19 poses a major threat to people’s health and economy,there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently.In non-stationary time series forecasting jobs,ther... As COVID-19 poses a major threat to people’s health and economy,there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently.In non-stationary time series forecasting jobs,there is frequently a hysteresis in the anticipated values relative to the real values.The multilayer deep-time convolutional network and a feature fusion network are combined in this paper’s proposal of an enhanced Multilayer Deep Time Convolutional Neural Network(MDTCNet)for COVID-19 prediction to address this problem.In particular,it is possible to record the deep features and temporal dependencies in uncertain time series,and the features may then be combined using a feature fusion network and a multilayer perceptron.Last but not least,the experimental verification is conducted on the prediction task of COVID-19 real daily confirmed cases in the world and the United States with uncertainty,realizing the short-term and long-term prediction of COVID-19 daily confirmed cases,and verifying the effectiveness and accuracy of the suggested prediction method,as well as reducing the hysteresis of the prediction results. 展开更多
关键词 Time series forecasting granulated convolutional networks data analysis techniques non-stationarity
下载PDF
Undrained Stability Analysis of Three-Dimensional Rectangular Trapdoor in Clay 被引量:1
2
作者 尹小军 谢骏 《Journal of Donghua University(English Edition)》 EI CAS 2020年第4期334-339,共6页
A new collapse model of the trapdoors,three-dimensional rectangular trapdoor(3DRT),is presented for ground surface collapse.Undrained stability of 3DRT is examined with the upper bound method of plasticity limit analy... A new collapse model of the trapdoors,three-dimensional rectangular trapdoor(3DRT),is presented for ground surface collapse.Undrained stability of 3DRT is examined with the upper bound method of plasticity limit analysis theory.The soil where the trapdoors are located is assumed to be a perfectly plastic model with a Tresca yield criterion.Block analysis technique is employed to investigate the collapse of 3DRT.The model is divided into five different block types and added up to ten rigid blocks.According to the law of conservation of energy,the critical stability ratios of 3DRT are obtained through a search proceeding.The results of upper bound solution for 3DRT are given,and three trapdoor models with depth various are discussed during the application in the stability analysis of square trapdoors.The critical stability ratios can be used in the design of underground excavation and support force. 展开更多
关键词 three-dimensional rectangular trapdoor upper bound solution stability ratio rigid block block analysis technique
下载PDF
Influnce of three dimensional green biomass on Shanghai atmosphere enviroment by analysis with CIS technique
3
《Global Geology》 1998年第1期101-101,共1页
关键词 CIS Influnce of three dimensional green biomass on Shanghai atmosphere enviroment by analysis with CIS technique
下载PDF
Cognitive Granular-Based Path Planning and Tracking for Intelligent Vehicle with Multi-Segment Bezier Curve Stitching
4
作者 Xudong Wang Xueshuai Qin +1 位作者 Huiyan Zhang Luis Ismael Minchala 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期385-400,共16页
Unmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments,such as low intelligence and poor comfort perfor-mance in... Unmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments,such as low intelligence and poor comfort perfor-mance in the driving process.The real-time performance of vehicles and the comfort requirements of passengers in path planning and tracking control of unmanned vehicles have attracted more and more attentions.In this paper,in order to improve the real-time performance of the autonomous vehicle planning module and the comfort requirements of passengers that a local granular-based path planning method and tracking control based on multi-segment Bezier curve splicing and model predictive control theory are pro-posed.Especially,the maximum trajectory curvature satisfying ride comfort is regarded as an important constraint condition,and the corresponding curvature threshold is utilized to calculate the control points of Bezier curve.By using low-order interpolation curve splicing,the planning computation is reduced,and the real-time performance of planning is improved,com-pared with one-segment curve fitting method.Furthermore,the comfort performance of the planned path is reflected intuitively by the curvature information of the path.Finally,the effectiveness of the proposed control method is verified by the co-simulation platform built by MATLAB/Simulink and Carsim.The simulation results show that the path tracking effect of multi-segment Bezier curve fitting is better than that of high-order curve planning in terms of real-time performance and comfort. 展开更多
关键词 Intelligent vehicle data analysis techniques path planning tracking control
下载PDF
A Novel Approach to Heart Failure Prediction and Classification through Advanced Deep Learning Model
5
作者 Abdalla Mahgoub 《World Journal of Cardiovascular Diseases》 2023年第9期586-604,共19页
In this study, the author will investigate and utilize advanced machine learning models related to two different methodologies to determine the best and most effective way to predict individuals with heart failure and... In this study, the author will investigate and utilize advanced machine learning models related to two different methodologies to determine the best and most effective way to predict individuals with heart failure and cardiovascular diseases. The first methodology involves a list of classification machine learning algorithms, and the second methodology involves the use of a deep learning algorithm known as MLP or Multilayer Perceptrons. Globally, hospitals are dealing with cases related to cardiovascular diseases and heart failure as they are major causes of death, not only for overweight individuals but also for those who do not adopt a healthy diet and lifestyle. Often, heart failures and cardiovascular diseases can be caused by many factors, including cardiomyopathy, high blood pressure, coronary heart disease, and heart inflammation [1]. Other factors, such as irregular shocks or stress, can also contribute to heart failure or a heart attack. While these events cannot be predicted, continuous data from patients’ health can help doctors predict heart failure. Therefore, this data-driven research utilizes advanced machine learning and deep learning techniques to better analyze and manipulate the data, providing doctors with informative decision-making tools regarding a person’s likelihood of experiencing heart failure. In this paper, the author employed advanced data preprocessing and cleaning techniques. Additionally, the dataset underwent testing using two different methodologies to determine the most effective machine-learning technique for producing optimal predictions. The first methodology involved employing a list of supervised classification machine learning algorithms, including Naïve Bayes (NB), KNN, logistic regression, and the SVM algorithm. The second methodology utilized a deep learning (DL) algorithm known as Multilayer Perceptrons (MLPs). This algorithm provided the author with the flexibility to experiment with different layer sizes and activation functions, such as ReLU, logistic (sigmoid), and Tanh. Both methodologies produced optimal models with high-level accuracy rates. The first methodology involves a list of supervised machine learning algorithms, including KNN, SVM, Adaboost, Logistic Regression, Naive Bayes, and Decision Tree algorithms. They achieved accuracy rates of 86%, 89%, 89%, 81%, 79%, and 99%, respectively. The author clearly explained that Decision Tree algorithm is not suitable for the dataset at hand due to overfitting issues. Therefore, it was discarded as an optimal model to be used. However, the latter methodology (Neural Network) demonstrated the most stable and optimal accuracy, achieving over 87% accuracy while adapting well to real-life situations and requiring low computing power overall. A performance assessment and evaluation were carried out based on a confusion matrix report to demonstrate feasibility and performance. The author concluded that the performance of the model in real-life situations can advance not only the medical field of science but also mathematical concepts. Additionally, the advanced preprocessing approach behind the model can provide value to the Data Science community. The model can be further developed by employing various optimization techniques to handle even larger datasets related to heart failures. Furthermore, different neural network algorithms can be tested to explore alternative approaches and yield different results. 展开更多
关键词 Heart Disease Prediction Cardiovascular Disease Machine Learning Algorithms Lazy Predict Multilayer Perceptrons (MLPs) Data Science techniques and analysis Deep Learning Activation Functions
下载PDF
Comparison of Fruit Quality Characteristics of Berries
6
作者 Ebru Yaşa Kafkas 《Agricultural Sciences》 2021年第8期907-915,共9页
<div style="text-align:justify;"> Fruits including berries are one of the most important sources of our daily nutrition due to their major aspect from point of view of consumers. The fruit quality incl... <div style="text-align:justify;"> Fruits including berries are one of the most important sources of our daily nutrition due to their major aspect from point of view of consumers. The fruit quality includes the internal and external properties. The internal quality mainly is determined by aroma, flavor, taste, texture, nutritional quality (soluble sugar content, starch, organic acids, soluble solids content, and carotenoids, total flavonoids, total phenolic, antioxidant activity), flesh firmness, diseases, and chemical residues, while the external quality mainly concerns the appearance, size and colour and bruises. How to measure berry fruit quality has always been one of the most attractive research hotspots in the food industry. For the present, most of the available investigative methods are still destructive, labor and time-consuming;besides, several methods require sample preparation, costly instruments and chemicals, which cannot be used for large-scale sample evaluation. With the increasing demands of real-time detection of fruit quality, non-destructive fruit evaluation methods have been greatly developed. However, problems like low detection accuracy and poor model adaptability remain in the non-destructive detection system. Thus, it is necessary to develop non-destructive, high-efficient, simple, accurate and low-labor-cost techniques for fruit quality determination. In this paper, a comparison of different and advanced analytical methods for assessing the fruit quality characteristics of berries was discussed. </div> 展开更多
关键词 Berries Fruit Quality CHROMATOGRAPHY analysis techniques FLAVOR
下载PDF
Evaluation of global navigation satellite system spoofing efficacy 被引量:1
7
作者 WANG Yue SUN Fuping +2 位作者 HAO Jinming ZHANG Lundong WANG Xian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第6期1238-1257,共20页
The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation ... The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation of spoofing capability.However,current evaluation systems face challenges arising from the irrationality of previous weighting methods,inapplicability of the conventional multi-attribute decision-making method and uncertainty existing in evaluation.To solve these difficulties,considering the validity of the obtained results,an evaluation method based on the game aggregated weight model and a joint approach involving the grey relational analysis and technique for order preference by similarity to an ideal solution(GRA-TOPSIS)are firstly proposed to determine the optimal scheme.Static and dynamic evaluation results under different schemes are then obtained via a fuzzy comprehensive assessment and an improved dynamic game method,to prioritize the deceptive efficacy of the equipment accurately and make pointed improvement for its core performance.The use of judging indicators,including Spearman rank correlation coefficient and so on,combined with obtained evaluation results,demonstrates the superiority of the proposed method and the optimal scheme by the horizontal comparison of different methods and vertical comparison of evaluation results.Finally,the results of field measurements and simulation tests show that the proposed method can better overcome the difficulties of existing methods and realize the effective evaluation. 展开更多
关键词 Global Navigation Satellite System(GNSS)spoofing index system for spoofing strategy game aggregated weight model grey relational analysis and technique for order preference by similarity to an ideal solution(GRA-TOPSIS)method dynamic game method
下载PDF
The analysis of heart sounds by using bispectral technique
8
作者 SHEN Minfen (Department of Electronics, Shantou University Shantou Guangdong 515063) QIU Shuye (Acoustics Researeh Unit, College of Science, Shantou University Shantou, Guangdong 515063) 《Chinese Journal of Acoustics》 1998年第2期171-178,共8页
An advanced signal processing technique, higher-order spectra, is proposed to in vestigate the nonlinear coupling phenomena of the heart sounds. To extract more higher-order information of the heart sounds, a non-Gaus... An advanced signal processing technique, higher-order spectra, is proposed to in vestigate the nonlinear coupling phenomena of the heart sounds. To extract more higher-order information of the heart sounds, a non-Gaussian AR model is selected for parametric bispectral estimation in analyzing several kinds of heart sounds. The non-Gaussian AR model of the sound signals is llsed to detect quadratic nonlinear interactions and to classify two patterns of heart sounds in terms of the parametric bispectral estimate. The bispectral cross-correlation is employed to the order determination of the model. Several real heart sound data are imple mented to show that the quadratic nonlinearity exist in both normal and clinical heart sounds.It was found that bispectral techniques are effective and useful tools in analyzing heart sounds and other acoustical 展开更多
关键词 ASSP IEEE The analysis of heart sounds by using bispectral technique
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部