The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal compon...The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal component analysis(PCA)and deep neural network(DNN).The PCA was used to eliminate collinearity and reduce the dimension of the input variables,and then the data processed by PCA were used to establish the DNN model.The prediction hit ratios for the Si element yield in the error ranges of±1%,±3%,and±5%are 54.0%,93.8%,and98.8%,respectively,whereas those of the Mn element yield in the error ranges of±1%,±2%,and±3%are 77.0%,96.3%,and 99.5%,respectively,in the PCA-DNN model.The results demonstrate that the PCA-DNN model performs better than the known models,such as the reference heat method,multiple linear regression,modified backpropagation,and DNN model.Meanwhile,the accurate prediction of the alloying element yield can greatly contribute to realizing a“narrow window”control of composition in molten steel.The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Predicting Bitcoin price trends is necessary because they represent the overall trend of the cryptocurrency market.As the history of the Bitcoin market is short and price volatility is high,studies have been conducted...Predicting Bitcoin price trends is necessary because they represent the overall trend of the cryptocurrency market.As the history of the Bitcoin market is short and price volatility is high,studies have been conducted on the factors affecting changes in Bitcoin prices.Experiments have been conducted to predict Bitcoin prices using Twitter content.However,the amount of data was limited,and prices were predicted for only a short period(less than two years).In this study,data from Reddit and LexisNexis,covering a period of more than four years,were collected.These data were utilized to estimate and compare the performance of the six machine learning techniques by adding technical and sentiment indicators to the price data along with the volume of posts.An accuracy of 90.57%and an area under the receiver operating characteristic curve value(AUC)of 97.48%were obtained using the extreme gradient boosting(XGBoost).It was shown that the use of both sentiment index using valence aware dictionary and sentiment reasoner(VADER)and 11 technical indicators utilizing moving average,relative strength index(RSI),stochastic oscillators in predicting Bitcoin price trends can produce significant results.Thus,the input features used in the paper can be applied on Bitcoin price prediction.Furthermore,this approach allows investors to make better decisions regarding Bitcoin-related investments.展开更多
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl...Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.展开更多
The application of deep learning is fast developing in climate prediction,in which El Ni?o–Southern Oscillation(ENSO),as the most dominant disaster-causing climate event,is a key target.Previous studies have shown th...The application of deep learning is fast developing in climate prediction,in which El Ni?o–Southern Oscillation(ENSO),as the most dominant disaster-causing climate event,is a key target.Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices.The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies(SSTAs)in the equatorial Pacific by training a convolutional neural network(CNN)model with historical simulations from CMIP6 models.Compared with dynamical models,the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific,but not in the eastern Pacific.The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months.A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.展开更多
Background:According to clinical practice guidelines,transarterial chemoembolization(TACE)is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma(HCC).Early prediction of treat...Background:According to clinical practice guidelines,transarterial chemoembolization(TACE)is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma(HCC).Early prediction of treatment response can help patients choose a reasonable treatment plan.This study aimed to investigate the value of the radiomic-clinical model in predicting the efficacy of the first TACE treatment for HCC to prolong patient survival.Methods:A total of 164 patients with HCC who underwent the first TACE from January 2017 to September 2021 were analyzed.The tumor response was assessed by modified response evaluation criteria in solid tumors(mRECIST),and the response of the first TACE to each session and its correlation with overall survival were evaluated.The radiomic signatures associated with the treatment response were identified by the least absolute shrinkage and selection operator(LASSO),and four machine learning models were built with different types of regions of interest(ROIs)(tumor and corresponding tissues)and the model with the best performance was selected.The predictive performance was assessed with receiver operating characteristic(ROC)curves and calibration curves.Results:Of all the models,the random forest(RF)model with peritumor(+10 mm)radiomic signatures had the best performance[area under ROC curve(AUC)=0.964 in the training cohort,AUC=0.949 in the validation cohort].The RF model was used to calculate the radiomic score(Rad-score),and the optimal cutoff value(0.34)was calculated according to the Youden’s index.Patients were then divided into a high-risk group(Rad-score>0.34)and a low-risk group(Rad-score≤0.34),and a nomogram model was successfully established to predict treatment response.The predicted treatment response also allowed for significant discrimination of Kaplan-Meier curves.Multivariate Cox regression identified six independent prognostic factors for overall survival,including male[hazard ratio(HR)=0.500,95%confidence interval(CI):0.260–0.962,P=0.038],alpha-fetoprotein(HR=1.003,95%CI:1.002–1.004,P<0.001),alanine aminotransferase(HR=1.003,95%CI:1.001–1.005,P=0.025),performance status(HR=2.400,95%CI:1.200–4.800,P=0.013),the number of TACE sessions(HR=0.870,95%CI:0.780–0.970,P=0.012)and Rad-score(HR=3.480,95%CI:1.416–8.552,P=0.007).Conclusions:The radiomic signatures and clinical factors can be well-used to predict the response of HCC patients to the first TACE and may help identify the patients most likely to benefit from TACE.展开更多
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ...DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipien...Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies.展开更多
Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the...Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.展开更多
BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality ...BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients.METHODS Web of Science,Embase,PubMed,and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients.Two reviewers independently assessed,selected,and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients.Data on serum iron or ferritin levels,mortality,and demographics were extracted.RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion.We observed a slight negative effect of serum ferritin on mortality in the United States population[relative risk(RR)1.002;95%CI:1.002-1.004].In patients with sepsis,serum iron had a significant negative effect on mortality(RR=1.567;95%CI:1.208-1.925).CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis.Furthermore,it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population.展开更多
BACKGROUND As a critical early event in hepatocellular carcinogenesis,telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma(HCC)patients,and its function in the genesis and tre...BACKGROUND As a critical early event in hepatocellular carcinogenesis,telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma(HCC)patients,and its function in the genesis and treatment of HCC has gained much attention over the past two decades.AIM To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase.METHODS The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to“articles”and“reviews”published in English.A total of 873 relevant publications related to HCC and telomerase were identified.We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications,such as the trends in the publications,citation counts,most prolific or influential writers,and most popular journals;to screen for keywords occurring at high frequency;and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences.VOSviewer was utilized to compile and visualize the bibliometric data.RESULTS A surge of 51 publications on HCC/telomerase research occurred in 2016,the most productive year from 1996 to 2023,accompanied by the peak citation count recorded in 2016.Up to December 2023,35226 citations were made to all publications,an average of 46.6 citations to each paper.The United States received the most citations(n=13531),followed by China(n=7427)and Japan(n=5754).In terms of national cooperation,China presented the highest centrality,its strongest bonds being to the United States and Japan.Among the 20 academic institutions with the most publications,ten came from China and the rest of Asia,though the University of Paris Cité,Public Assistance-Hospitals of Paris,and the National Institute of Health and Medical Research(INSERM)were the most prolific.As for individual contributions,Hisatomi H,Kaneko S,and Ide T were the three most prolific authors.Kaneko S ranked first by H-index,G-index,and overall publication count,while Zucman-Rossi J ranked first in citation count.The five most popular journals were the World Journal of Gastroenterology,Hepatology,Journal of Hepatology,Oncotarget,and Oncogene,while Nature Genetics,Hepatology,and Nature Reviews Disease Primers had the most citations.We extracted 2293 keywords from the publications,120 of which appeared more than ten times.The most frequent were HCC,telomerase and human telomerase reverse transcriptase(hTERT).Keywords such as mutational landscape,TERT promoter mutations,landscape,risk,and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years.CONCLUSION Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.展开更多
BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages ...BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.展开更多
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the...The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.展开更多
The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and co...The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).展开更多
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adh...A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.展开更多
Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been s...Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been shown to play an important role in AML leukemogenesis and progression.In the current study,we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas(TCGA)based on differential gene expression analysis and univariable Cox proportional hazards regression analysis.By using multi-model analysis,including Adaptive LASSO regression,LASSO regression,and Elastic Net,we constructed a 9-CSMs prognostic model for risk stratification of the AML patients.The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels.Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients.The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores.Notably,single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance.Furthermore,PI3K inhibitors were identified as potential treatments for these high-risk patients.In conclusion,we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy.展开更多
In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge pr...In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.展开更多
The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication e...The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication efforts, malaria remains a serious threat, particularly in regions like Africa. This study explores how integrating Gregor’s Type IV theory with Geographic Information Systems (GIS) improves our understanding of disease dynamics, especially Malaria transmission patterns in Uganda. By combining data-driven algorithms, artificial intelligence, and geospatial analysis, the research aims to determine the most reliable predictors of Malaria incident rates and assess the impact of different factors on transmission. Using diverse predictive modeling techniques including Linear Regression, K-Nearest Neighbor, Neural Network, and Random Forest, the study found that;Random Forest model outperformed the others, demonstrating superior predictive accuracy with an R<sup>2</sup> of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Antimalarial treatment was identified as the most influential factor, with mosquito net access associated with a significant reduction in incident rates, while higher temperatures correlated with increased rates. Our study concluded that the Random Forest model was effective in predicting malaria incident rates in Uganda and highlighted the significance of climate factors and preventive measures such as mosquito nets and antimalarial drugs. We recommended that districts with malaria hotspots lacking Indoor Residual Spraying (IRS) coverage prioritize its implementation to mitigate incident rates, while those with high malaria rates in 2020 require immediate attention. By advocating for the use of appropriate predictive models, our research emphasized the importance of evidence-based decision-making in malaria control strategies, aiming to reduce transmission rates and save lives.展开更多
基金supported by the National Natural Science Foundation of China(No.51974023)State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(No.41621005)。
文摘The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal component analysis(PCA)and deep neural network(DNN).The PCA was used to eliminate collinearity and reduce the dimension of the input variables,and then the data processed by PCA were used to establish the DNN model.The prediction hit ratios for the Si element yield in the error ranges of±1%,±3%,and±5%are 54.0%,93.8%,and98.8%,respectively,whereas those of the Mn element yield in the error ranges of±1%,±2%,and±3%are 77.0%,96.3%,and 99.5%,respectively,in the PCA-DNN model.The results demonstrate that the PCA-DNN model performs better than the known models,such as the reference heat method,multiple linear regression,modified backpropagation,and DNN model.Meanwhile,the accurate prediction of the alloying element yield can greatly contribute to realizing a“narrow window”control of composition in molten steel.The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
基金This study was supported by a National Research Foundation of Korea(NRF)(http://nrf.re.kr/eng/index)grant funded by the Korean government(NRF-2020R1A2C1014957).
文摘Predicting Bitcoin price trends is necessary because they represent the overall trend of the cryptocurrency market.As the history of the Bitcoin market is short and price volatility is high,studies have been conducted on the factors affecting changes in Bitcoin prices.Experiments have been conducted to predict Bitcoin prices using Twitter content.However,the amount of data was limited,and prices were predicted for only a short period(less than two years).In this study,data from Reddit and LexisNexis,covering a period of more than four years,were collected.These data were utilized to estimate and compare the performance of the six machine learning techniques by adding technical and sentiment indicators to the price data along with the volume of posts.An accuracy of 90.57%and an area under the receiver operating characteristic curve value(AUC)of 97.48%were obtained using the extreme gradient boosting(XGBoost).It was shown that the use of both sentiment index using valence aware dictionary and sentiment reasoner(VADER)and 11 technical indicators utilizing moving average,relative strength index(RSI),stochastic oscillators in predicting Bitcoin price trends can produce significant results.Thus,the input features used in the paper can be applied on Bitcoin price prediction.Furthermore,this approach allows investors to make better decisions regarding Bitcoin-related investments.
文摘Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0606703)the National Natural Science Foundation of China(Grant No.41975116)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202025)。
文摘The application of deep learning is fast developing in climate prediction,in which El Ni?o–Southern Oscillation(ENSO),as the most dominant disaster-causing climate event,is a key target.Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices.The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies(SSTAs)in the equatorial Pacific by training a convolutional neural network(CNN)model with historical simulations from CMIP6 models.Compared with dynamical models,the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific,but not in the eastern Pacific.The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months.A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.
文摘Background:According to clinical practice guidelines,transarterial chemoembolization(TACE)is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma(HCC).Early prediction of treatment response can help patients choose a reasonable treatment plan.This study aimed to investigate the value of the radiomic-clinical model in predicting the efficacy of the first TACE treatment for HCC to prolong patient survival.Methods:A total of 164 patients with HCC who underwent the first TACE from January 2017 to September 2021 were analyzed.The tumor response was assessed by modified response evaluation criteria in solid tumors(mRECIST),and the response of the first TACE to each session and its correlation with overall survival were evaluated.The radiomic signatures associated with the treatment response were identified by the least absolute shrinkage and selection operator(LASSO),and four machine learning models were built with different types of regions of interest(ROIs)(tumor and corresponding tissues)and the model with the best performance was selected.The predictive performance was assessed with receiver operating characteristic(ROC)curves and calibration curves.Results:Of all the models,the random forest(RF)model with peritumor(+10 mm)radiomic signatures had the best performance[area under ROC curve(AUC)=0.964 in the training cohort,AUC=0.949 in the validation cohort].The RF model was used to calculate the radiomic score(Rad-score),and the optimal cutoff value(0.34)was calculated according to the Youden’s index.Patients were then divided into a high-risk group(Rad-score>0.34)and a low-risk group(Rad-score≤0.34),and a nomogram model was successfully established to predict treatment response.The predicted treatment response also allowed for significant discrimination of Kaplan-Meier curves.Multivariate Cox regression identified six independent prognostic factors for overall survival,including male[hazard ratio(HR)=0.500,95%confidence interval(CI):0.260–0.962,P=0.038],alpha-fetoprotein(HR=1.003,95%CI:1.002–1.004,P<0.001),alanine aminotransferase(HR=1.003,95%CI:1.001–1.005,P=0.025),performance status(HR=2.400,95%CI:1.200–4.800,P=0.013),the number of TACE sessions(HR=0.870,95%CI:0.780–0.970,P=0.012)and Rad-score(HR=3.480,95%CI:1.416–8.552,P=0.007).Conclusions:The radiomic signatures and clinical factors can be well-used to predict the response of HCC patients to the first TACE and may help identify the patients most likely to benefit from TACE.
基金support from the National Key R&D Program of China(Grant No.2018YFE0118700)the National Natural Science Foundation of China(NSFC Grant No.62174119)+1 种基金the 111 Project(Grant No.B07014)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin University.
文摘DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
基金supported by grants from the National Nat-ural Science Foundation of China (81570587 and 81700557)the Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology (2013A061401007 and 2017B030314018)+3 种基金Guangdong Provincial Natural Science Funds for Major Basic Science Culture Project (2015A030308010)Science and Technology Program of Guangzhou (201704020150)the Natural Science Foundations of Guangdong province (2016A030310141 and 2020A1515010091)Young Teachers Training Project of Sun Yat-sen University (K0401068) and the Guangdong Science and Technology Innovation Strategy (pdjh2022b0010 and pdjh2023a0002)。
文摘Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies.
基金the National Natural Science Foundation of China(No.31802297)。
文摘Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.
基金Supported by The National Natural Science Foundation of China,No.82104989.
文摘BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients.METHODS Web of Science,Embase,PubMed,and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients.Two reviewers independently assessed,selected,and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients.Data on serum iron or ferritin levels,mortality,and demographics were extracted.RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion.We observed a slight negative effect of serum ferritin on mortality in the United States population[relative risk(RR)1.002;95%CI:1.002-1.004].In patients with sepsis,serum iron had a significant negative effect on mortality(RR=1.567;95%CI:1.208-1.925).CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis.Furthermore,it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population.
基金the Beijing Hope Run Special Fund of Cancer Foundation of China,No.LC2020L05.
文摘BACKGROUND As a critical early event in hepatocellular carcinogenesis,telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma(HCC)patients,and its function in the genesis and treatment of HCC has gained much attention over the past two decades.AIM To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase.METHODS The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to“articles”and“reviews”published in English.A total of 873 relevant publications related to HCC and telomerase were identified.We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications,such as the trends in the publications,citation counts,most prolific or influential writers,and most popular journals;to screen for keywords occurring at high frequency;and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences.VOSviewer was utilized to compile and visualize the bibliometric data.RESULTS A surge of 51 publications on HCC/telomerase research occurred in 2016,the most productive year from 1996 to 2023,accompanied by the peak citation count recorded in 2016.Up to December 2023,35226 citations were made to all publications,an average of 46.6 citations to each paper.The United States received the most citations(n=13531),followed by China(n=7427)and Japan(n=5754).In terms of national cooperation,China presented the highest centrality,its strongest bonds being to the United States and Japan.Among the 20 academic institutions with the most publications,ten came from China and the rest of Asia,though the University of Paris Cité,Public Assistance-Hospitals of Paris,and the National Institute of Health and Medical Research(INSERM)were the most prolific.As for individual contributions,Hisatomi H,Kaneko S,and Ide T were the three most prolific authors.Kaneko S ranked first by H-index,G-index,and overall publication count,while Zucman-Rossi J ranked first in citation count.The five most popular journals were the World Journal of Gastroenterology,Hepatology,Journal of Hepatology,Oncotarget,and Oncogene,while Nature Genetics,Hepatology,and Nature Reviews Disease Primers had the most citations.We extracted 2293 keywords from the publications,120 of which appeared more than ten times.The most frequent were HCC,telomerase and human telomerase reverse transcriptase(hTERT).Keywords such as mutational landscape,TERT promoter mutations,landscape,risk,and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years.CONCLUSION Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.
文摘BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.
基金provided by Science and Technology Development Project of Jilin Province(No.20230101338JC)。
文摘The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.
基金The National Natural Science Foundation of China under contract Nos 41875061 and 41775165.
文摘The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
基金the High-Performance Computing Platform of Beijing University of Chemical Technology(BUCT)for supporting this papersupported by the Fundamental Research Funds for the Central Universities(JD2319)+2 种基金the CNOOC Technical Cooperation Project(ZX2022ZCTYF7612)the National Natural Science Foundation of China(51775029,52004014)the Chinese Universities Scientific Fund(XK2020-04)。
文摘A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.
基金supported by the National Natural Science Foundation of China(Grant Nos.32200590 to K.L.,81972358 to Q.W.,91959113 to Q.W.,and 82372897 to Q.W.)the Natural Science Foundation of Jiangsu Province(Grant No.BK20210530 to K.L.).
文摘Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been shown to play an important role in AML leukemogenesis and progression.In the current study,we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas(TCGA)based on differential gene expression analysis and univariable Cox proportional hazards regression analysis.By using multi-model analysis,including Adaptive LASSO regression,LASSO regression,and Elastic Net,we constructed a 9-CSMs prognostic model for risk stratification of the AML patients.The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels.Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients.The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores.Notably,single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance.Furthermore,PI3K inhibitors were identified as potential treatments for these high-risk patients.In conclusion,we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy.
文摘In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.
文摘The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication efforts, malaria remains a serious threat, particularly in regions like Africa. This study explores how integrating Gregor’s Type IV theory with Geographic Information Systems (GIS) improves our understanding of disease dynamics, especially Malaria transmission patterns in Uganda. By combining data-driven algorithms, artificial intelligence, and geospatial analysis, the research aims to determine the most reliable predictors of Malaria incident rates and assess the impact of different factors on transmission. Using diverse predictive modeling techniques including Linear Regression, K-Nearest Neighbor, Neural Network, and Random Forest, the study found that;Random Forest model outperformed the others, demonstrating superior predictive accuracy with an R<sup>2</sup> of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Antimalarial treatment was identified as the most influential factor, with mosquito net access associated with a significant reduction in incident rates, while higher temperatures correlated with increased rates. Our study concluded that the Random Forest model was effective in predicting malaria incident rates in Uganda and highlighted the significance of climate factors and preventive measures such as mosquito nets and antimalarial drugs. We recommended that districts with malaria hotspots lacking Indoor Residual Spraying (IRS) coverage prioritize its implementation to mitigate incident rates, while those with high malaria rates in 2020 require immediate attention. By advocating for the use of appropriate predictive models, our research emphasized the importance of evidence-based decision-making in malaria control strategies, aiming to reduce transmission rates and save lives.