The famous von Neumann-Wold Theorem tells us that each analytic Toeplitz operator with n + 1-Blaschke factors is unitary to n + 1 copies of the unilateral shift on the Hardy space. It is obvious that the von Neumann-W...The famous von Neumann-Wold Theorem tells us that each analytic Toeplitz operator with n + 1-Blaschke factors is unitary to n + 1 copies of the unilateral shift on the Hardy space. It is obvious that the von Neumann-Wold Theorem does not hold in the Bergman space. In this paper, using the basis constructed by Michael and Zhu on the Bergman space we prove that each analytic Toeplitz operator M B(z) is similar to n + 1 copies of the Bergman shift if and only if B(z) is an n + 1-Blaschke product. From the above theorem, we characterize the similarity invariant of some analytic Toeplitz operators by using K 0-group term.展开更多
In this paper, using the matrix skills and operator theory techniques we characterize the commutant of analytic Toeplitz operators on Bergman space. For f(z) = z^ng(z) (n ≥1), g(z) = b0 + b1z^p1 +b2z^p2 +....In this paper, using the matrix skills and operator theory techniques we characterize the commutant of analytic Toeplitz operators on Bergman space. For f(z) = z^ng(z) (n ≥1), g(z) = b0 + b1z^p1 +b2z^p2 +.. , bk ≠ 0 (k = 0, 1, 2,...), our main result is =A′(Mf) = A′(Mzn)∩A′(Mg) = A′(Mz^s), where s = g.c.d.(n,p1,p2,...). In the last section, we study the relation between strongly irreducible curve and the winding number W(f,f(α)), α ∈ D.展开更多
In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol Sψ(z) on Nφ has at least m non-trivial minimal reducing subspaces, where m is the dimension of H^2(Гω)⊙φ(ω)H^2(Гω...In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol Sψ(z) on Nφ has at least m non-trivial minimal reducing subspaces, where m is the dimension of H^2(Гω)⊙φ(ω)H^2(Гω). Moreover, the restriction of Sψ(z) on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift Mz.展开更多
In this paper,a generalized Toeplitz operator is defined and some of results about the classical Toeplitz operator are generalized.In particular,we obtain the necessary and sufficient condition for the product of two ...In this paper,a generalized Toeplitz operator is defined and some of results about the classical Toeplitz operator are generalized.In particular,we obtain the necessary and sufficient condition for the product of two such Toeplitz operators to still be Toeplitz operator and the necessary and sufficient condition for such Toeplitz operator to be normal operator.Finally,a necessary condition for two such Toeplitz operators to be commutative is established.展开更多
基金the National Natural Science Foundation of China (Grant No. 10571041)
文摘The famous von Neumann-Wold Theorem tells us that each analytic Toeplitz operator with n + 1-Blaschke factors is unitary to n + 1 copies of the unilateral shift on the Hardy space. It is obvious that the von Neumann-Wold Theorem does not hold in the Bergman space. In this paper, using the basis constructed by Michael and Zhu on the Bergman space we prove that each analytic Toeplitz operator M B(z) is similar to n + 1 copies of the Bergman shift if and only if B(z) is an n + 1-Blaschke product. From the above theorem, we characterize the similarity invariant of some analytic Toeplitz operators by using K 0-group term.
基金the National Natural Science Foundation of China(10571041)the Doctoral Foundation of Hebei Normal University(130144)
文摘In this paper, using the matrix skills and operator theory techniques we characterize the commutant of analytic Toeplitz operators on Bergman space. For f(z) = z^ng(z) (n ≥1), g(z) = b0 + b1z^p1 +b2z^p2 +.. , bk ≠ 0 (k = 0, 1, 2,...), our main result is =A′(Mf) = A′(Mzn)∩A′(Mg) = A′(Mz^s), where s = g.c.d.(n,p1,p2,...). In the last section, we study the relation between strongly irreducible curve and the winding number W(f,f(α)), α ∈ D.
文摘In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol Sψ(z) on Nφ has at least m non-trivial minimal reducing subspaces, where m is the dimension of H^2(Гω)⊙φ(ω)H^2(Гω). Moreover, the restriction of Sψ(z) on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift Mz.
基金Foundation item: the Natural Science Foundation of Jiangxi Province (No. 2007GZS0371)
文摘In this paper,a generalized Toeplitz operator is defined and some of results about the classical Toeplitz operator are generalized.In particular,we obtain the necessary and sufficient condition for the product of two such Toeplitz operators to still be Toeplitz operator and the necessary and sufficient condition for such Toeplitz operator to be normal operator.Finally,a necessary condition for two such Toeplitz operators to be commutative is established.