Energy efficiency data from ethylene production equipment are of high dimension, dynamic and time sequential, so their evaluation is affected by many factors. Abnormal data from ethylene production are eliminated thro...Energy efficiency data from ethylene production equipment are of high dimension, dynamic and time sequential, so their evaluation is affected by many factors. Abnormal data from ethylene production are eliminated through consistency test, making the data consumption uniform to improve the comparability of data. Due to the limit of input and output data of decision making unit in data envelopment analysis(DEA), the energy efficiency data from the same technology in a certain year are disposed monthly using DEA. The DEA data of energy efficiency from the same technology are weighted and fused using analytic hierarchy process. The energy efficiency data from different technologies are evaluated by their relative effectiveness to find the direction of energy saving and consumption reduction.展开更多
This research proposes an integrated approach to the Data Envelopment Analysis (DEA) and Analytic Hierarchy Process (AHP) methodologies for ratio analysis. According to this, we compute two sets of weights of ratios i...This research proposes an integrated approach to the Data Envelopment Analysis (DEA) and Analytic Hierarchy Process (AHP) methodologies for ratio analysis. According to this, we compute two sets of weights of ratios in the DEA framework. All ratios are treated as outputs without explicit inputs. The first set of weights represents the most attainable efficiency level for each Decision Making Unit (DMU) in comparison to the other DMUs. The second set of weights represents the relative priority of output-ratios using AHP. We assess the performance of each DMU in terms of the relative closeness to the priority weights of output-ratios. For this purpose, we develop a parametric goal programming model to measure the deviations between the two sets of weights. Increasing the value of a parameter in a defined range of efficiency loss, we explore how much the deviations can be improved to achieve the desired goals of the decision maker.This may result in various ranking positions for each DMU in comparison to the other DMUs. An illustrated example of eight listed companies in the steel industry of China is used to highlight the usefulness of the proposed approach.展开更多
The author [Pakkar, M.S. (2014) Using Data Envelopment Analysis and Analytic Hierarchy Process to Construct Composite Indicators. Journal of Applied Operational Research, 6(3), 174-187.] recently proposed a multiplica...The author [Pakkar, M.S. (2014) Using Data Envelopment Analysis and Analytic Hierarchy Process to Construct Composite Indicators. Journal of Applied Operational Research, 6(3), 174-187.] recently proposed a multiplicative approach using Data Envelopment Analysis (DEA) and Analytic Hierarchy Process (AHP) to reflect the priority weights of indicators in constructing composite indicators (CIs). Nonetheless, this approach is limited to the situations with a single level hierarchy which might not satisfy the needs of a multiple level hierarchy. Therefore, the current paper extends this approach to the situations in which the indicators of similar characteristics can be grouped into sub-categories and further linked into categories to form a three-level hierarchical structure. An illustrative example of road safety performance for a set of European countries highlights the usefulness of the proposed “extended approach”.展开更多
基金Supported by the National Natural Science Foundation of China(61374166)the Doctoral Fund of Ministry of Education of China(20120010110010)the Fundamental Research Funds for the Central Universities(YS1404)
文摘Energy efficiency data from ethylene production equipment are of high dimension, dynamic and time sequential, so their evaluation is affected by many factors. Abnormal data from ethylene production are eliminated through consistency test, making the data consumption uniform to improve the comparability of data. Due to the limit of input and output data of decision making unit in data envelopment analysis(DEA), the energy efficiency data from the same technology in a certain year are disposed monthly using DEA. The DEA data of energy efficiency from the same technology are weighted and fused using analytic hierarchy process. The energy efficiency data from different technologies are evaluated by their relative effectiveness to find the direction of energy saving and consumption reduction.
文摘This research proposes an integrated approach to the Data Envelopment Analysis (DEA) and Analytic Hierarchy Process (AHP) methodologies for ratio analysis. According to this, we compute two sets of weights of ratios in the DEA framework. All ratios are treated as outputs without explicit inputs. The first set of weights represents the most attainable efficiency level for each Decision Making Unit (DMU) in comparison to the other DMUs. The second set of weights represents the relative priority of output-ratios using AHP. We assess the performance of each DMU in terms of the relative closeness to the priority weights of output-ratios. For this purpose, we develop a parametric goal programming model to measure the deviations between the two sets of weights. Increasing the value of a parameter in a defined range of efficiency loss, we explore how much the deviations can be improved to achieve the desired goals of the decision maker.This may result in various ranking positions for each DMU in comparison to the other DMUs. An illustrated example of eight listed companies in the steel industry of China is used to highlight the usefulness of the proposed approach.
文摘The author [Pakkar, M.S. (2014) Using Data Envelopment Analysis and Analytic Hierarchy Process to Construct Composite Indicators. Journal of Applied Operational Research, 6(3), 174-187.] recently proposed a multiplicative approach using Data Envelopment Analysis (DEA) and Analytic Hierarchy Process (AHP) to reflect the priority weights of indicators in constructing composite indicators (CIs). Nonetheless, this approach is limited to the situations with a single level hierarchy which might not satisfy the needs of a multiple level hierarchy. Therefore, the current paper extends this approach to the situations in which the indicators of similar characteristics can be grouped into sub-categories and further linked into categories to form a three-level hierarchical structure. An illustrative example of road safety performance for a set of European countries highlights the usefulness of the proposed “extended approach”.