An analytic-numerical solution of wave transformation in shoaling water is presented in this paper. The analytical expression for wave heights along the wave rays is derived in consideration of the combined effect of ...An analytic-numerical solution of wave transformation in shoaling water is presented in this paper. The analytical expression for wave heights along the wave rays is derived in consideration of the combined effect of water depth shoaling, the wave refraction and the sea bottom friction. The wave rays (orthogonals) are calculated by a fourth order Runge-Kutta algorithm and the wave crest lines are computed by an iteration procedure. The numerical results are compared with analytical solution for a special case of parallel- straight contour shore and field data, and comparisons show that the proposed mathematical model and computation method are very useful and convenient for engineering application.展开更多
In this paper, a method to construct an analytic-numerical solution for homogeneous parabolic coupled systems with homogeneous boundary conditions of the type ut = Auxx, A1u(o,t) + B1ux(o,t) = 0, A2u(1,t) + B2ux(1,t) ...In this paper, a method to construct an analytic-numerical solution for homogeneous parabolic coupled systems with homogeneous boundary conditions of the type ut = Auxx, A1u(o,t) + B1ux(o,t) = 0, A2u(1,t) + B2ux(1,t) = 0, ot>0, u (x,0) = f(x), where A is a positive stable matrix and A1, B1, B1, B2,? ?are arbitrary matrices for which the block matrix is non-singular, is proposed.展开更多
The formulations of analytic-numerical method for the stress analysis of non-concurrent spatial tubular joints are introduced in the paper. The spatial DT joints with different eccentricity in the vertical diametrical...The formulations of analytic-numerical method for the stress analysis of non-concurrent spatial tubular joints are introduced in the paper. The spatial DT joints with different eccentricity in the vertical diametrical plane of chord are computed. Finally the influence of eccentricity on the stress at possible hot spots is discussed.展开更多
文摘An analytic-numerical solution of wave transformation in shoaling water is presented in this paper. The analytical expression for wave heights along the wave rays is derived in consideration of the combined effect of water depth shoaling, the wave refraction and the sea bottom friction. The wave rays (orthogonals) are calculated by a fourth order Runge-Kutta algorithm and the wave crest lines are computed by an iteration procedure. The numerical results are compared with analytical solution for a special case of parallel- straight contour shore and field data, and comparisons show that the proposed mathematical model and computation method are very useful and convenient for engineering application.
文摘In this paper, a method to construct an analytic-numerical solution for homogeneous parabolic coupled systems with homogeneous boundary conditions of the type ut = Auxx, A1u(o,t) + B1ux(o,t) = 0, A2u(1,t) + B2ux(1,t) = 0, ot>0, u (x,0) = f(x), where A is a positive stable matrix and A1, B1, B1, B2,? ?are arbitrary matrices for which the block matrix is non-singular, is proposed.
文摘The formulations of analytic-numerical method for the stress analysis of non-concurrent spatial tubular joints are introduced in the paper. The spatial DT joints with different eccentricity in the vertical diametrical plane of chord are computed. Finally the influence of eccentricity on the stress at possible hot spots is discussed.