We proposed a new laser analytical mode,which used the high-frequency laser ablation to deliberately obtain the peak-shape signal profile,combined with the linear regression calibration(LRC)method to calculate element...We proposed a new laser analytical mode,which used the high-frequency laser ablation to deliberately obtain the peak-shape signal profile,combined with the linear regression calibration(LRC)method to calculate elemental or isotopic ratios.In order to assess the performance of the new laser analytical mode for the application in the field of earth science,we systematically investigated the elemental quantitative analysis with high spatial resolution(10μm),rapid U-Pb dating in zircons and accurate Sr-Hf isotope analysis in geological samples.The new high-frequency laser analysis technology(20 Hz,100 pulses)reduced the limit of detection(LOD)of 25 elements to 0.005-0.16μg g^(-1) with crater diameters of 10μm,which are significantly lower(decrease to 2-20%)than previous researches.The quantitative analysis of five silicate glass reference materials showed that the precision and accuracy of the 25 trace elements(with the concentration ranging from 0.17 to 683μg g^(-1))were better than 16% and 15%,respectively.The new methods raised the analytical throughput of zircon U-Pb dating,Sr isotope ratios and Hf isotope ratios to 250 analyses per hour,144 analyses per hour and 120 analyses per hour in theory,while the analytical accuracy and precision were not affected.The detailed investigations showed that the proposed new laser analytical mode has good application effects in the field of earth sciences.展开更多
A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of...A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of spectral gaps equals to the modulation factor,which is consistent with previous studies.For a periodic system with local defects introduced by the boundary conditions,it shows that the conducting-mesh-induced DGM is always well confined by spectral gaps while the conducting-sleeve-induced DGM is not.The defect location can be a useful tool to dynamically control the frequency and spatial periodicity of DGM inside spectral gaps.This controllability can be potentially applied to the interaction between gap eigenmodes and energetic particles in fusion plasmas,and optical microcavities and waveguides in photonic crystals.展开更多
Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support ...Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support systems in tunnelling and mining operations. A review of has indicated that three systems of reinforcement devices have evolved as part of rock bolt and ground anchor while the rock is not generally thought of as being a component of the reinforcement system. A classification of rock bolting reinforcement systems is presented, followed by the fundamental theory of the load transfer mechanism. The failure mode of two phases of rock bolting system is formularised. The failure modes of cable bolting are discussed using a bond strength model as well as an iterative method. Finally, the interfacial shear stress model for ribbed bar is introduced and a closed form solution is obtained using a tri-line stress strain relationship.展开更多
To improve the bearing pressure capacity of ultrahigh pressure apparatus,the internal autofrettaged cylinder with interlayer pressure(ACCIP)is introduced,and the analytical model for the ACCIP structure and its deriva...To improve the bearing pressure capacity of ultrahigh pressure apparatus,the internal autofrettaged cylinder with interlayer pressure(ACCIP)is introduced,and the analytical model for the ACCIP structure and its derivation are presented as well.Calculation showed that the ACCIP method enhance bearing pressure of the apparatus obviously;optimization results revealed that under the working pressure pw=1.07σs and different radius ratios,the ACCIP method can keep the apparatus in deformed-elastically state;And when the pw=1.07σs,the minimum radius ratio was approximate 3.29,in this case,no yielding happened.The above results demonstrate that the ACCIP method is a promising technique to improve the bearing pressure of ultrahigh pressure apparatus,and the analytical model for the ACCIP method is also reasonable.In addition,the minimum radius ratio ro/ri under randomly specified workload can be Fig.d out by the analytical model proposed in this work.展开更多
The utility of a passive fourth-harmonic cavity plays a key role in suppressing longitudinal beam insta- bilities in the electron storage ring and lengthens the bunch by a factor of 2.6 for the phase I[ project of the...The utility of a passive fourth-harmonic cavity plays a key role in suppressing longitudinal beam insta- bilities in the electron storage ring and lengthens the bunch by a factor of 2.6 for the phase I[ project of the Hefei Light Source (HLS II ). Meanwhile, instabilities driven by higher-order modes (HOM) may limit the performance of the higher-harmonic cavity. In this paper, the parasitic coupled-bunch instability, which is driven by narrow band parasitic modes, and the microwave instability, which is driven by broadband HOM, are both modeled analytically. The analytic modeling results are in good agreement with those of our previous simulation study and indicate that the passive fourth-harmonic cavity suppresses parasitic coupled-bunch instabilities and microwave instability. The modeling suggests that a fourth-harmonic cavity may be successfully used at the HLS II.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41973013,41730211)the Natural Science Foundation of Hubei Province(Grant No.2020CFA045)the Most Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Grant Nos.MSFGPMR04,MSFGPMR08)。
文摘We proposed a new laser analytical mode,which used the high-frequency laser ablation to deliberately obtain the peak-shape signal profile,combined with the linear regression calibration(LRC)method to calculate elemental or isotopic ratios.In order to assess the performance of the new laser analytical mode for the application in the field of earth science,we systematically investigated the elemental quantitative analysis with high spatial resolution(10μm),rapid U-Pb dating in zircons and accurate Sr-Hf isotope analysis in geological samples.The new high-frequency laser analysis technology(20 Hz,100 pulses)reduced the limit of detection(LOD)of 25 elements to 0.005-0.16μg g^(-1) with crater diameters of 10μm,which are significantly lower(decrease to 2-20%)than previous researches.The quantitative analysis of five silicate glass reference materials showed that the precision and accuracy of the 25 trace elements(with the concentration ranging from 0.17 to 683μg g^(-1))were better than 16% and 15%,respectively.The new methods raised the analytical throughput of zircon U-Pb dating,Sr isotope ratios and Hf isotope ratios to 250 analyses per hour,144 analyses per hour and 120 analyses per hour in theory,while the analytical accuracy and precision were not affected.The detailed investigations showed that the proposed new laser analytical mode has good application effects in the field of earth sciences.
基金supported by National Natural Science Foundation of China(No.11405271)
文摘A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of spectral gaps equals to the modulation factor,which is consistent with previous studies.For a periodic system with local defects introduced by the boundary conditions,it shows that the conducting-mesh-induced DGM is always well confined by spectral gaps while the conducting-sleeve-induced DGM is not.The defect location can be a useful tool to dynamically control the frequency and spatial periodicity of DGM inside spectral gaps.This controllability can be potentially applied to the interaction between gap eigenmodes and energetic particles in fusion plasmas,and optical microcavities and waveguides in photonic crystals.
文摘Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support systems in tunnelling and mining operations. A review of has indicated that three systems of reinforcement devices have evolved as part of rock bolt and ground anchor while the rock is not generally thought of as being a component of the reinforcement system. A classification of rock bolting reinforcement systems is presented, followed by the fundamental theory of the load transfer mechanism. The failure mode of two phases of rock bolting system is formularised. The failure modes of cable bolting are discussed using a bond strength model as well as an iterative method. Finally, the interfacial shear stress model for ribbed bar is introduced and a closed form solution is obtained using a tri-line stress strain relationship.
基金the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20200999),meanwhile I am also grateful to Prof.Renshu Yuan for his help.
文摘To improve the bearing pressure capacity of ultrahigh pressure apparatus,the internal autofrettaged cylinder with interlayer pressure(ACCIP)is introduced,and the analytical model for the ACCIP structure and its derivation are presented as well.Calculation showed that the ACCIP method enhance bearing pressure of the apparatus obviously;optimization results revealed that under the working pressure pw=1.07σs and different radius ratios,the ACCIP method can keep the apparatus in deformed-elastically state;And when the pw=1.07σs,the minimum radius ratio was approximate 3.29,in this case,no yielding happened.The above results demonstrate that the ACCIP method is a promising technique to improve the bearing pressure of ultrahigh pressure apparatus,and the analytical model for the ACCIP method is also reasonable.In addition,the minimum radius ratio ro/ri under randomly specified workload can be Fig.d out by the analytical model proposed in this work.
基金Supported by National Natural Science Foundation of China (10979045, 11175180, 11175182)
文摘The utility of a passive fourth-harmonic cavity plays a key role in suppressing longitudinal beam insta- bilities in the electron storage ring and lengthens the bunch by a factor of 2.6 for the phase I[ project of the Hefei Light Source (HLS II ). Meanwhile, instabilities driven by higher-order modes (HOM) may limit the performance of the higher-harmonic cavity. In this paper, the parasitic coupled-bunch instability, which is driven by narrow band parasitic modes, and the microwave instability, which is driven by broadband HOM, are both modeled analytically. The analytic modeling results are in good agreement with those of our previous simulation study and indicate that the passive fourth-harmonic cavity suppresses parasitic coupled-bunch instabilities and microwave instability. The modeling suggests that a fourth-harmonic cavity may be successfully used at the HLS II.