The multi-reference configuration interaction method and aug-cc-pvqz (AVQZ) have been used to calculate potential energy curves (PECs) of the singlet and triplet states of the riu and rig symmetry of B2++. All o...The multi-reference configuration interaction method and aug-cc-pvqz (AVQZ) have been used to calculate potential energy curves (PECs) of the singlet and triplet states of the riu and rig symmetry of B2++. All of the four states (^l∏u, ^1∏g, ^3∏u and ^3∏g) are found to be metastable states, though the potential well of ^3∏u symmetry is very shallow. Based on the PECs, the analytical potential energy functions (APEFs) of these states have been fitted using the least square fitting method and two models of function. The spectroscopic parameters of each state are also calculated, and are compared with other investigations in the literature. The credibility and veracity of the two functions are evaluated. Some ideas to improve the fitting accuracy are presented. Also the vibrational levels for each state are predicted by solving the SchrSdinger equation of nuclear motion.展开更多
The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR s...The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect.展开更多
The symmetry-adapted-duster configuration-interaction method is used to investigate the spectroscopicproperties of ~7Li_2(A^1∑_u^+) over the internuclear distance ranging from 2.4ao to 37ao.The complete potential ene...The symmetry-adapted-duster configuration-interaction method is used to investigate the spectroscopicproperties of ~7Li_2(A^1∑_u^+) over the internuclear distance ranging from 2.4ao to 37ao.The complete potential energycurves are calculated at numbers of basis sets.All the ab initio calculated points are fitted to the analytic MurrellSorbie function and then employed to compute the spectroscopic constants.By comparison,the spectroscopic constantsreproduced by the potential attained at D95(3df,3pd) are found to be very close to the experiments,a^d the values (T_e,D_e,R_e,ω_e,ω_eχ_e,α_e and B_e) are of 1.732 93 eV,1.161 36 eV,0.313 27 nm,251.95 cm^(-1),1.623 cm^(-1),0.005 35 cm^(-1),and0.490 cm^(-1),respectively.With the potential obtained at D95(3df,3pd),the totally 75 vibrational states are found whenJ=0.The vibrational levels,the classical turning points and the inertial rotation constants of the first 68 vibrationalstates are calculated for the first time and compared with the available measurements.Good agreement is obtained.The centrifugal distortion constants of the first 32 vibrational states are also reported for the first time.The reasonabledissociation limit for ~7Li_2(A^1∑_u^+) is deduced using the calculated results at present.展开更多
The potential energy curves(PECs) of the first electronic excited state of S2(a^1△g) are calculated employing a multi-reference configuration interaction method with the Davidson correction in combination with a ...The potential energy curves(PECs) of the first electronic excited state of S2(a^1△g) are calculated employing a multi-reference configuration interaction method with the Davidson correction in combination with a series of correlationconsistent basis sets from Dunning: aug-cc-p VX Z(X = T, Q, 5, 6). In order to obtain PECs with high accuracy, PECs calculated with aug-cc-p V(Q, 5)Z basis sets are extrapolated to the complete basis set limit. The resulting PECs are then fitted to the analytical potential energy function(APEF) using the extended Hartree–Fock approximate correlation energy method. By utilizing the fitted APEF, accurate and reliable spectroscopic parameters are obtained, which are consistent with both experimental and theoretical results. By solving the Schr o¨dinger equation numerically with the APEFs obtained at the AV6 Z and the extrapolated AV(Q, 5)Z level of theory, we calculate the complete set of vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants.展开更多
In this paper the equilibrium structure of HCO has been optimized by using density functional theory (DFT)/ B3P86 method and CC-PVTZ basis. It has a bent (Cs, X^2A') ground state structure with an angle of 124.40...In this paper the equilibrium structure of HCO has been optimized by using density functional theory (DFT)/ B3P86 method and CC-PVTZ basis. It has a bent (Cs, X^2A') ground state structure with an angle of 124.4095 °. The vibronic frequencies and force constants have also been calculated. Based on the principles of atomic and molecular reaction statics, the possible electronic states and reasonable dissociation limits for the ground state of HCO molecule have been determined. The analytic potential energy function of HCO (X^2A') molecule has been derived by using the many-body expansion theory. The contour lines are constructed, which show the static properties of HCO (X^2A'), such as the equilibrium structure, the lowest energies, etc. The potential energy surface of HCO (X^2A') is reasonable and very satisfactory.展开更多
This paper reports that the equilibrium structure of NH2 has been optimized at the QCISD/6-311++G (3df, 3pd) level. The ground-state NH2 has a bent (C2v, X^2B1) structure with an angle of 103.0582°. The geo...This paper reports that the equilibrium structure of NH2 has been optimized at the QCISD/6-311++G (3df, 3pd) level. The ground-state NH2 has a bent (C2v, X^2B1) structure with an angle of 103.0582°. The geometrical structure is in good agreement with the other calculational and experimental results. The harmonic frequencies and the force constants have also been calculated. Based on the group theory and the principle of microscopic reversibility, the dissociation limits of NH2(C2v, X^2B1) have been derived. The potential energy surface of NH2(X^2B1) is reasonable. The contour lines are constructed, the structure and energy of NH2 reappear on the potential energy surface.展开更多
The equilibrium structure of flue gas SO2 is optimized using the density functional theory (DFT)/B3P86 method and CC-PV5Z basis. The result shows that it has a bent (C2v, X1A1) ground state structure with an angle...The equilibrium structure of flue gas SO2 is optimized using the density functional theory (DFT)/B3P86 method and CC-PV5Z basis. The result shows that it has a bent (C2v, X1A1) ground state structure with an angle of 119.1184°. The vibronic frequencies and the force constants are also calculated. Based on the principles of atomic and molecular reaction statics (AMIIS), the possible electronic states and reasonable dissociation limits for the ground state of SO2 molecule are determined. The potential functions of SO and 02 are fitted by the modified Murrell-Sorbie+c6 (M-S+c6) potential function and the fitted parameters, the force constants and the spectroscopic constants are obtained, which are all close to the experimental values. The analytic potential energy function of the SO2 (X1A1) molecule is derived using the many-body expansion theory. The contour liues are constructed, which show the static properties of SO2 (XIA1), such as the equilibrium structure, the lowest energies, the most possible reaction channel, etc.展开更多
The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-ada...The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-adaptedcluster configuration interaction method in full active space. The whole potential energy curve for the B1H state is obtained over the internuclear distance ranging from about 0.10 nm to 0,54 nm, and has a least-square fit to the analytic Murrell-Sorbie function form. The vertical excitation energy is calculated from the ground state to the B^1∏ state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B^1∏ state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.展开更多
By using the B3P86/aug-cc-pvtz method, the accurate equilibrium geometry of the AlSO (Cs, X2AH) molecule has been calculated and compared with available theoreticM values. The obtained results show that the AlSO mol...By using the B3P86/aug-cc-pvtz method, the accurate equilibrium geometry of the AlSO (Cs, X2AH) molecule has been calculated and compared with available theoreticM values. The obtained results show that the AlSO molecule has a most stable structure with bond lengths of ROA1= 0.1864 nm, ROS=0.1623 nm, RAIS=0.2450 nm, together with a dissociation energy of 13.88 eV. The possible electronic states and their reasonable dissociation limits for the ground state of the AlSO molecule were determined based on the principle of atomic and molecular reaction statics. The analytic potential energy function of the AlSO molecule was derived by the many-body expansion theory and the contour lines were constructed for the first time, which show the internal information of the AlSO molecule, including the equilibrium structure and stable point. The analysis demonstrates that the obtained potential energy function of AlSO is reaSonable and successful and the present investigations provide important insights for further study on molecular reaction dynamics.展开更多
High level calculations on the ground state of 12Mg1H molecule have been performed using multi-reference configuration interaction (MRCI) method with the Davidson modification. The core-valence correlation and scala...High level calculations on the ground state of 12Mg1H molecule have been performed using multi-reference configuration interaction (MRCI) method with the Davidson modification. The core-valence correlation and scalar relativistic corrections are included into the present calculations at the same time. The potential energy curve (PEC) of the ground state, all of the vibrational levels and spectroscopic parameters are fitted. The results show that the levels and spectroscopic parameters are in good agreement with the available experimental data. The analytical potential energy function (APEF) is also deduced from the calculated PEC using the Murrell-Sorbie (M-S) potential function. The present results can provide a helpful reference for the future spectroscopic experiments or dynamical calculations of the molecule.展开更多
The potential energy curves (PECs) of the 3Π states of GaX (X=F, Cl, and Br) molecules are calculated using the multireference configuration interaction method with a large contracted basis set aug-cc-pV5Z. The P...The potential energy curves (PECs) of the 3Π states of GaX (X=F, Cl, and Br) molecules are calculated using the multireference configuration interaction method with a large contracted basis set aug-cc-pV5Z. The PECs are accurately fitted to analytical potential energy functions (APEFs) using the Murrell–Sorbie potential function. The spectroscopic parameters for the states are determined using the obtained APEFs, and compared with the theoretical and experimental data available presently in the literature.展开更多
The potential energy curves (PECs) of BO molecule, including ∑^+and ∏ symmetries with doublet spin multiplicities, are obtained employing multi-reference configuration interaction (MRCI) method and Dunning's c...The potential energy curves (PECs) of BO molecule, including ∑^+and ∏ symmetries with doublet spin multiplicities, are obtained employing multi-reference configuration interaction (MRCI) method and Dunning's correlation consistent basis sets. The analytical potential energy functions (APEFs) are fitted using the Murrell-Sorbie (MS) function and the least square method. Based on the PECs, the spectroscopic constants of the states have been determined and compared with the theoretical and experimental results available to affirm the accuracy and liability of the calculations. The root-mean-square (RMS) errors between the fitted results and the ab initio values are too little in comparison with the chemical accuracy (349.755 cm^-1). It is shown that the present APEFs are accurate and can display the interaction between the atoms well. The present APEFs can be used to construct more complicated APEF or do some dynamic investigations.展开更多
Potential energies of LiS(^2∏), LiS-(^1E+) and LiS+ (^3E-) are calculated by using the multi- reference configuration interaction method including Davidson correction and the augmented correlation-consistent ...Potential energies of LiS(^2∏), LiS-(^1E+) and LiS+ (^3E-) are calculated by using the multi- reference configuration interaction method including Davidson correction and the augmented correlation-consistent basis sets aug-cc-PV(X+d)Z (X=T, Q). Such obtained potential energies are subsequently extrapolated to the complete basis set limit. Both the core-valence correction and the relativistic effect are also considered. The analytical potential energy functions are then obtained by fitting such accurate energies utilizing a least-squares fitting procedure. By using such analytical potential energy functions, we obtain the accurate spectroscopic parameters, complete set of vibrational levels and classical turning points. The present results are compared well with the experimental and other theoretical work.展开更多
The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which t...The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which the nuclear motions(translational,rotational and vibration motions) are not included,therefore,its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics(AMRS),the reasonable dissociation limits of D2O(1A1)are determined,its equilibrium geometry and dissociation energy are calculated by density-functional theory(DFT) B3lyp,and then,using the many-body expansion method the potential energy function of D2O(1A1) is obtained for the first time. The potential contours are drawn,in which it is found that the reactive channel D + OD→D2O has no threshold energy,so it is a free radical reaction. But the reactive channel O + DD→D2O has a saddle point. The study of collision for D2O(1A1) is under way.展开更多
This paper investigates the effect of basis sets through the potential energy curves (PECs) of six rare gas complexes He2, Ne2, Ar2, HeiNe, He-Ar, and Ne-Ar. The coupled cluster singles and doubles method with pertu...This paper investigates the effect of basis sets through the potential energy curves (PECs) of six rare gas complexes He2, Ne2, Ar2, HeiNe, He-Ar, and Ne-Ar. The coupled cluster singles and doubles method with perturbative treatment of triple excitations, doubly augmented basis sets of d-aug-cc-pVQZ, bond functions, and basis set superposition errors are employed. The diffuse function is more effective than the polarization function on describing the dissociation energy. The PECs are fitted into analytical potential energy functions (APEFs) using three expressions. It is found that all the expressions are suitable for describing the complexes of rare gases. Based on these APEFs, the spectroscopic parameters are calculated and the results are compared with the theoretical and experimental data available in the literature.展开更多
The analytical potential energy function of HDO is constructed at first using the many-body expansion method. The reaction dynamics of O+HD (v = 0, j = 0) in five product channels are all studied by quasi-classical...The analytical potential energy function of HDO is constructed at first using the many-body expansion method. The reaction dynamics of O+HD (v = 0, j = 0) in five product channels are all studied by quasi-classical trajectory (QCT) method. The results show that the long-lived complex compound HDO is the dominant product at low collision energy. With increasing collision energy, O+HD → OH+D and O+HD → OD+H exchange reactions will occur with remarkable characteristics, such as near threshold energies, different reaction probabilities, and different reaction cross sections, implying the isotopic effect between H and D. With further increasing collision energy (e.g., up to 502.08 kJ/mol), O+HD → O+H+D will occur and induce the complete dissociation into single O, H, and D atoms.展开更多
Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1FI state of KH molecule. To investigate the correlation effect of core-valence electrons, five schemes ar...Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1FI state of KH molecule. To investigate the correlation effect of core-valence electrons, five schemes are employed which include the different correlated electrons and different active spaces. The PECs are fitted into analytical potential energy functions (APEFs). The spectroscopic parameters, ro-vibrational levels, and transition frequencies are determined based on the APEFs and compared with available experimental and theoretical data. The molecular properties for B1II obtained in this letter, which are better than those available in literature, can be reproduced with calculations using the suitable correlated electrons and active space of orbitals.展开更多
The accurate dissociation energy and equilibrium geometry of the ball state of ^7LiH molecule is calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. And the calculated re...The accurate dissociation energy and equilibrium geometry of the ball state of ^7LiH molecule is calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. And the calculated results are 0.2580 eV and 0.1958 nm for the dissociation energy and equilibrium geometry, respectively. The whole potential energy curve for the b^3∏ state is also calculated over the internuclear separation range from about 0.10 to 0.54 nm. The results are fitted by the Murrell-Sorbie function. It is found that the Murrell-Sorbie function form, which is mainly used to fit the ground-state potential energy function, is well suitable for the excited triplet b^3∏ state. The vertical excitation energy from the ground state to the b^3∏ state is calculated to be 4.233 eV. Based on the analytic potential energy function, the harmonic frequency of 610.88 cm^-1 about this state is firstly estimated. Compared with other theoretical results, this work is the most complete effort to deal with the analytic potential energy function and the harmonic frequency of this state.展开更多
文摘The multi-reference configuration interaction method and aug-cc-pvqz (AVQZ) have been used to calculate potential energy curves (PECs) of the singlet and triplet states of the riu and rig symmetry of B2++. All of the four states (^l∏u, ^1∏g, ^3∏u and ^3∏g) are found to be metastable states, though the potential well of ^3∏u symmetry is very shallow. Based on the PECs, the analytical potential energy functions (APEFs) of these states have been fitted using the least square fitting method and two models of function. The spectroscopic parameters of each state are also calculated, and are compared with other investigations in the literature. The credibility and veracity of the two functions are evaluated. Some ideas to improve the fitting accuracy are presented. Also the vibrational levels for each state are predicted by solving the SchrSdinger equation of nuclear motion.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11147158 and 11264020the Jiangxi Province Natural Science Foundation under Grant No 2010GQW0031the Jiangxi Province Scientific Research Program of the Education Bureau under Grant No GJJ12483
文摘The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10574039 and 10174019
文摘The symmetry-adapted-duster configuration-interaction method is used to investigate the spectroscopicproperties of ~7Li_2(A^1∑_u^+) over the internuclear distance ranging from 2.4ao to 37ao.The complete potential energycurves are calculated at numbers of basis sets.All the ab initio calculated points are fitted to the analytic MurrellSorbie function and then employed to compute the spectroscopic constants.By comparison,the spectroscopic constantsreproduced by the potential attained at D95(3df,3pd) are found to be very close to the experiments,a^d the values (T_e,D_e,R_e,ω_e,ω_eχ_e,α_e and B_e) are of 1.732 93 eV,1.161 36 eV,0.313 27 nm,251.95 cm^(-1),1.623 cm^(-1),0.005 35 cm^(-1),and0.490 cm^(-1),respectively.With the potential obtained at D95(3df,3pd),the totally 75 vibrational states are found whenJ=0.The vibrational levels,the classical turning points and the inertial rotation constants of the first 68 vibrationalstates are calculated for the first time and compared with the available measurements.Good agreement is obtained.The centrifugal distortion constants of the first 32 vibrational states are also reported for the first time.The reasonabledissociation limit for ~7Li_2(A^1∑_u^+) is deduced using the calculated results at present.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304185 and 11074151)
文摘The potential energy curves(PECs) of the first electronic excited state of S2(a^1△g) are calculated employing a multi-reference configuration interaction method with the Davidson correction in combination with a series of correlationconsistent basis sets from Dunning: aug-cc-p VX Z(X = T, Q, 5, 6). In order to obtain PECs with high accuracy, PECs calculated with aug-cc-p V(Q, 5)Z basis sets are extrapolated to the complete basis set limit. The resulting PECs are then fitted to the analytical potential energy function(APEF) using the extended Hartree–Fock approximate correlation energy method. By utilizing the fitted APEF, accurate and reliable spectroscopic parameters are obtained, which are consistent with both experimental and theoretical results. By solving the Schr o¨dinger equation numerically with the APEFs obtained at the AV6 Z and the extrapolated AV(Q, 5)Z level of theory, we calculate the complete set of vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants.
基金Project supported by the National Natural Science Foundation of China and CAEP (Grant No 10676025), by the scientific project of Jiangxi education departments of China (Grant Nos 2006261 and 2006236), and by the Research Funds of College of Jinggangshan, China (Grant No JZ0616).
文摘In this paper the equilibrium structure of HCO has been optimized by using density functional theory (DFT)/ B3P86 method and CC-PVTZ basis. It has a bent (Cs, X^2A') ground state structure with an angle of 124.4095 °. The vibronic frequencies and force constants have also been calculated. Based on the principles of atomic and molecular reaction statics, the possible electronic states and reasonable dissociation limits for the ground state of HCO molecule have been determined. The analytic potential energy function of HCO (X^2A') molecule has been derived by using the many-body expansion theory. The contour lines are constructed, which show the static properties of HCO (X^2A'), such as the equilibrium structure, the lowest energies, etc. The potential energy surface of HCO (X^2A') is reasonable and very satisfactory.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574039 and 10174019)Henan Innovation Project For University Prominent Research Talents (Grant No HAIPUTT2006KYCX002)the Natural Science Foundation of Education Commission of Henan Province (Grant Nos 2003140028 and 200510476004)
文摘This paper reports that the equilibrium structure of NH2 has been optimized at the QCISD/6-311++G (3df, 3pd) level. The ground-state NH2 has a bent (C2v, X^2B1) structure with an angle of 103.0582°. The geometrical structure is in good agreement with the other calculational and experimental results. The harmonic frequencies and the force constants have also been calculated. Based on the group theory and the principle of microscopic reversibility, the dissociation limits of NH2(C2v, X^2B1) have been derived. The potential energy surface of NH2(X^2B1) is reasonable. The contour lines are constructed, the structure and energy of NH2 reappear on the potential energy surface.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11147158 and 10965002)the Natural Science Foundation of Jiangxi Province, China (Grant No. 2010GQW0031)the Scientific Project of Jiangxi Education Department, China (Grant No. GJJ11540)
文摘The equilibrium structure of flue gas SO2 is optimized using the density functional theory (DFT)/B3P86 method and CC-PV5Z basis. The result shows that it has a bent (C2v, X1A1) ground state structure with an angle of 119.1184°. The vibronic frequencies and the force constants are also calculated. Based on the principles of atomic and molecular reaction statics (AMIIS), the possible electronic states and reasonable dissociation limits for the ground state of SO2 molecule are determined. The potential functions of SO and 02 are fitted by the modified Murrell-Sorbie+c6 (M-S+c6) potential function and the fitted parameters, the force constants and the spectroscopic constants are obtained, which are all close to the experimental values. The analytic potential energy function of the SO2 (X1A1) molecule is derived using the many-body expansion theory. The contour liues are constructed, which show the static properties of SO2 (XIA1), such as the equilibrium structure, the lowest energies, the most possible reaction channel, etc.
基金Project supported by the National Natural Science Foundation of China (Grant No 10174019), Henan Innovation for University Prominent Research Talents (2006KYCX002) and the Natural Science Foundation of Henan Province, China (Grant No 2006140008).Acknowledgment The authors would like to heartily thank Professor Zhu Z H, of Sichuan University, for his helpful discussion about the reasonable dissociation limits at the planning stages of these calculations.
文摘The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-adaptedcluster configuration interaction method in full active space. The whole potential energy curve for the B1H state is obtained over the internuclear distance ranging from about 0.10 nm to 0,54 nm, and has a least-square fit to the analytic Murrell-Sorbie function form. The vertical excitation energy is calculated from the ground state to the B^1∏ state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B^1∏ state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974139 and 10964002)the Natural Science Foundation of Hainan Province,China(Grant No.110001)+3 种基金Guizhou Province,China(Grant No.[2009]2066)the Scientific Research Foundation by Zhejiang University of Technology,China(Grant No.109003729)the Science-Technology Foundation of Sichuan Province,China(Grant No.09ZQ026-049)the Fund of Aiding Elites' Research Condition of Guizhou Province, China(Grant No.TZJF-2008-42)
文摘By using the B3P86/aug-cc-pvtz method, the accurate equilibrium geometry of the AlSO (Cs, X2AH) molecule has been calculated and compared with available theoreticM values. The obtained results show that the AlSO molecule has a most stable structure with bond lengths of ROA1= 0.1864 nm, ROS=0.1623 nm, RAIS=0.2450 nm, together with a dissociation energy of 13.88 eV. The possible electronic states and their reasonable dissociation limits for the ground state of the AlSO molecule were determined based on the principle of atomic and molecular reaction statics. The analytic potential energy function of the AlSO molecule was derived by the many-body expansion theory and the contour lines were constructed for the first time, which show the internal information of the AlSO molecule, including the equilibrium structure and stable point. The analysis demonstrates that the obtained potential energy function of AlSO is reaSonable and successful and the present investigations provide important insights for further study on molecular reaction dynamics.
基金Project supported by the National Natural Science Foundation of China(Grand Nos.11147158,91221301,and 11264020)
文摘High level calculations on the ground state of 12Mg1H molecule have been performed using multi-reference configuration interaction (MRCI) method with the Davidson modification. The core-valence correlation and scalar relativistic corrections are included into the present calculations at the same time. The potential energy curve (PEC) of the ground state, all of the vibrational levels and spectroscopic parameters are fitted. The results show that the levels and spectroscopic parameters are in good agreement with the available experimental data. The analytical potential energy function (APEF) is also deduced from the calculated PEC using the Murrell-Sorbie (M-S) potential function. The present results can provide a helpful reference for the future spectroscopic experiments or dynamical calculations of the molecule.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174117 and 10974078)the Program for Scientific Research Innova-tion Team in Colleges and Universities of Shandong Province,China
文摘The potential energy curves (PECs) of the 3Π states of GaX (X=F, Cl, and Br) molecules are calculated using the multireference configuration interaction method with a large contracted basis set aug-cc-pV5Z. The PECs are accurately fitted to analytical potential energy functions (APEFs) using the Murrell–Sorbie potential function. The spectroscopic parameters for the states are determined using the obtained APEFs, and compared with the theoretical and experimental data available presently in the literature.
基金supported by the National Natural Science Foundation of China under Grant No. 10674114
文摘The potential energy curves (PECs) of BO molecule, including ∑^+and ∏ symmetries with doublet spin multiplicities, are obtained employing multi-reference configuration interaction (MRCI) method and Dunning's correlation consistent basis sets. The analytical potential energy functions (APEFs) are fitted using the Murrell-Sorbie (MS) function and the least square method. Based on the PECs, the spectroscopic constants of the states have been determined and compared with the theoretical and experimental results available to affirm the accuracy and liability of the calculations. The root-mean-square (RMS) errors between the fitted results and the ab initio values are too little in comparison with the chemical accuracy (349.755 cm^-1). It is shown that the present APEFs are accurate and can display the interaction between the atoms well. The present APEFs can be used to construct more complicated APEF or do some dynamic investigations.
基金This work was supported by the National Natural Science Foundation of China (No.11304185), Taishan scholar project of Shandong Province, China Postdoctoral Science Foundation (No.2014M561957), and Post-doctoral Innovation Project of Shandong Province (No.201402013), Shandong Provincial Natural Science Foundation (No.ZR2014AM022). The authors gratefully acknowledge Dr. S. Li for useful discussion in this work.
文摘Potential energies of LiS(^2∏), LiS-(^1E+) and LiS+ (^3E-) are calculated by using the multi- reference configuration interaction method including Davidson correction and the augmented correlation-consistent basis sets aug-cc-PV(X+d)Z (X=T, Q). Such obtained potential energies are subsequently extrapolated to the complete basis set limit. Both the core-valence correction and the relativistic effect are also considered. The analytical potential energy functions are then obtained by fitting such accurate energies utilizing a least-squares fitting procedure. By using such analytical potential energy functions, we obtain the accurate spectroscopic parameters, complete set of vibrational levels and classical turning points. The present results are compared well with the experimental and other theoretical work.
基金Supported by the National Natural Science Foundation of China (Grant No. NSAF10676022)
文摘The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which the nuclear motions(translational,rotational and vibration motions) are not included,therefore,its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics(AMRS),the reasonable dissociation limits of D2O(1A1)are determined,its equilibrium geometry and dissociation energy are calculated by density-functional theory(DFT) B3lyp,and then,using the many-body expansion method the potential energy function of D2O(1A1) is obtained for the first time. The potential contours are drawn,in which it is found that the reactive channel D + OD→D2O has no threshold energy,so it is a free radical reaction. But the reactive channel O + DD→D2O has a saddle point. The study of collision for D2O(1A1) is under way.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674114 and 10974078)
文摘This paper investigates the effect of basis sets through the potential energy curves (PECs) of six rare gas complexes He2, Ne2, Ar2, HeiNe, He-Ar, and Ne-Ar. The coupled cluster singles and doubles method with perturbative treatment of triple excitations, doubly augmented basis sets of d-aug-cc-pVQZ, bond functions, and basis set superposition errors are employed. The diffuse function is more effective than the polarization function on describing the dissociation energy. The PECs are fitted into analytical potential energy functions (APEFs) using three expressions. It is found that all the expressions are suitable for describing the complexes of rare gases. Based on these APEFs, the spectroscopic parameters are calculated and the results are compared with the theoretical and experimental data available in the literature.
基金Project supported by the National Natural Science Foundation of China (Grant No 10676022)
文摘The analytical potential energy function of HDO is constructed at first using the many-body expansion method. The reaction dynamics of O+HD (v = 0, j = 0) in five product channels are all studied by quasi-classical trajectory (QCT) method. The results show that the long-lived complex compound HDO is the dominant product at low collision energy. With increasing collision energy, O+HD → OH+D and O+HD → OD+H exchange reactions will occur with remarkable characteristics, such as near threshold energies, different reaction probabilities, and different reaction cross sections, implying the isotopic effect between H and D. With further increasing collision energy (e.g., up to 502.08 kJ/mol), O+HD → O+H+D will occur and induce the complete dissociation into single O, H, and D atoms.
基金supported by the National Natural Science Foundation of China (Nos. 10974078,10674114,and 10874104)the Research Fund for the Doctoral Program of Higher Education of China (No.20093704110001)
文摘Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1FI state of KH molecule. To investigate the correlation effect of core-valence electrons, five schemes are employed which include the different correlated electrons and different active spaces. The PECs are fitted into analytical potential energy functions (APEFs). The spectroscopic parameters, ro-vibrational levels, and transition frequencies are determined based on the APEFs and compared with available experimental and theoretical data. The molecular properties for B1II obtained in this letter, which are better than those available in literature, can be reproduced with calculations using the suitable correlated electrons and active space of orbitals.
基金This work was supported by the National Natural Science Foundation of China (No. 10574039)Henan Innovation Fund for University Prominent Research Talents (No. 2006KYCX002).
文摘The accurate dissociation energy and equilibrium geometry of the ball state of ^7LiH molecule is calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. And the calculated results are 0.2580 eV and 0.1958 nm for the dissociation energy and equilibrium geometry, respectively. The whole potential energy curve for the b^3∏ state is also calculated over the internuclear separation range from about 0.10 to 0.54 nm. The results are fitted by the Murrell-Sorbie function. It is found that the Murrell-Sorbie function form, which is mainly used to fit the ground-state potential energy function, is well suitable for the excited triplet b^3∏ state. The vertical excitation energy from the ground state to the b^3∏ state is calculated to be 4.233 eV. Based on the analytic potential energy function, the harmonic frequency of 610.88 cm^-1 about this state is firstly estimated. Compared with other theoretical results, this work is the most complete effort to deal with the analytic potential energy function and the harmonic frequency of this state.