Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
Edge technology aims to bring cloud resources(specifically,the computation,storage,and network)to the closed proximity of the edge devices,i.e.,smart devices where the data are produced and consumed.Embedding computin...Edge technology aims to bring cloud resources(specifically,the computation,storage,and network)to the closed proximity of the edge devices,i.e.,smart devices where the data are produced and consumed.Embedding computing and application in edge devices lead to emerging of two new concepts in edge technology:edge computing and edge analytics.Edge analytics uses some techniques or algorithms to analyse the data generated by the edge devices.With the emerging of edge analytics,the edge devices have become a complete set.Currently,edge analytics is unable to provide full support to the analytic techniques.The edge devices cannot execute advanced and sophisticated analytic algorithms following various constraints such as limited power supply,small memory size,limited resources,etc.This article aims to provide a detailed discussion on edge analytics.The key contributions of the paper are as follows-a clear explanation to distinguish between the three concepts of edge technology:edge devices,edge computing,and edge analytics,along with their issues.In addition,the article discusses the implementation of edge analytics to solve many problems and applications in various areas such as retail,agriculture,industry,and healthcare.Moreover,the research papers of the state-of-the-art edge analytics are rigorously reviewed in this article to explore the existing issues,emerging challenges,research opportunities and their directions,and applications.展开更多
This study explores the complex relationship between climate change and human development. The aim is to understand how climate change affects human development across countries, regions, and the global population. Vi...This study explores the complex relationship between climate change and human development. The aim is to understand how climate change affects human development across countries, regions, and the global population. Visual analytics were used to examine the impact of various climate change indicators on different aspects of human development. The study highlights the urgent need for climate change action and encourages policymakers to make decisive moves. Climate change adversely affects numerous aspects of daily life, leading to significant consequences that must be addressed through policy changes and global governance recommendations. Key findings include that regions with higher CO2 emissions experience a significantly higher incidence of life-threatening diseases compared to regions with lower emissions. Additionally, higher CO2 emissions correlate with consistent death rates. Increased pollution exposure is associated with a higher prevalence of life-threatening diseases and higher rates of malnutrition. Moreover, greater mineral depletion is linked to more frequent life-threatening diseases, suggesting that industrialization contributes to adverse health effects. These results provide valuable insights for policy and decision-making aimed at mitigating the impact of climate change on human development.展开更多
This study explores the integration of predictive analytics in strategic corporate communications, with a specific focus on stakeholder engagement and crisis management. Our mixed-methods approach, which combines a co...This study explores the integration of predictive analytics in strategic corporate communications, with a specific focus on stakeholder engagement and crisis management. Our mixed-methods approach, which combines a comprehensive literature review with case studies of five multinational corporations, allows us to investigate the applications, challenges, and ethical implications of leveraging predictive models in communication strategies. While our findings reveal significant potential for enhancing personalized content delivery, real-time sentiment analysis, and proactive crisis management, we stress the need for careful consideration of challenges such as data privacy concerns and algorithmic bias. This emphasis on ethical implementation is crucial in navigating the complex landscape of predictive analytics in corporate communications. To address these issues, we propose a framework that prioritizes ethical considerations. Furthermore, we identify key areas for future research, thereby contributing to the evolving field of data-driven communication management.展开更多
With the advent of digital therapeutics(DTx),the development of software as a medical device(SaMD)for mobile and wearable devices has gained significant attention in recent years.Existing DTx evaluations,such as rando...With the advent of digital therapeutics(DTx),the development of software as a medical device(SaMD)for mobile and wearable devices has gained significant attention in recent years.Existing DTx evaluations,such as randomized clinical trials,mostly focus on verifying the effectiveness of DTx products.To acquire a deeper understanding of DTx engagement and behavioral adherence,beyond efficacy,a large amount of contextual and interaction data from mobile and wearable devices during field deployment would be required for analysis.In this work,the overall flow of the data-driven DTx analytics is reviewed to help researchers and practitioners to explore DTx datasets,to investigate contextual patterns associated with DTx usage,and to establish the(causal)relationship between DTx engagement and behavioral adherence.This review of the key components of datadriven analytics provides novel research directions in the analysis of mobile sensor and interaction datasets,which helps to iteratively improve the receptivity of existing DTx.展开更多
To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb...To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.展开更多
This paper proposes a novel framework to detect cyber-attacks using Machine Learning coupled with User Behavior Analytics.The framework models the user behavior as sequences of events representing the user activities ...This paper proposes a novel framework to detect cyber-attacks using Machine Learning coupled with User Behavior Analytics.The framework models the user behavior as sequences of events representing the user activities at such a network.The represented sequences are thenfitted into a recurrent neural network model to extract features that draw distinctive behavior for individual users.Thus,the model can recognize frequencies of regular behavior to profile the user manner in the network.The subsequent procedure is that the recurrent neural network would detect abnormal behavior by classifying unknown behavior to either regu-lar or irregular behavior.The importance of the proposed framework is due to the increase of cyber-attacks especially when the attack is triggered from such sources inside the network.Typically detecting inside attacks are much more challenging in that the security protocols can barely recognize attacks from trustful resources at the network,including users.Therefore,the user behavior can be extracted and ultimately learned to recognize insightful patterns in which the regular patterns reflect a normal network workflow.In contrast,the irregular patterns can trigger an alert for a potential cyber-attack.The framework has been fully described where the evaluation metrics have also been introduced.The experimental results show that the approach performed better compared to other approaches and AUC 0.97 was achieved using RNN-LSTM 1.The paper has been concluded with pro-viding the potential directions for future improvements.展开更多
An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinc...An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.展开更多
Climate change and global warming results in natural hazards, including flash floods. Flash floods can create blue spots;areas where transport networks (roads, tunnels, bridges, passageways) and other engineering stru...Climate change and global warming results in natural hazards, including flash floods. Flash floods can create blue spots;areas where transport networks (roads, tunnels, bridges, passageways) and other engineering structures within them are at flood risk. The economic and social impact of flooding revealed that the damage caused by flash floods leading to blue spots is very high in terms of dollar amount and direct impacts on people’s lives. The impact of flooding within blue spots is either infrastructural or social, affecting lives and properties. Currently, more than 16.1 million properties in the U.S are vulnerable to flooding, and this is projected to increase by 3.2% within the next 30 years. Some models have been developed for flood risks analysis and management including some hydrological models, algorithms and machine learning and geospatial models. The models and methods reviewed are based on location data collection, statistical analysis and computation, and visualization (mapping). This research aims to create blue spots model for the State of Tennessee using ArcGIS visual programming language (model) and data analytics pipeline.展开更多
Similarity has been playing an important role in computer science,artificial intelligence(AI)and data science.However,similarity intelligence has been ignored in these disciplines.Similarity intelligence is a process ...Similarity has been playing an important role in computer science,artificial intelligence(AI)and data science.However,similarity intelligence has been ignored in these disciplines.Similarity intelligence is a process of discovering intelligence through similarity.This article will explore similarity intelligence,similarity-based reasoning,similarity computing and analytics.More specifically,this article looks at the similarity as an intelligence and its impact on a few areas in the real world.It explores similarity intelligence accompanying experience-based intelligence,knowledge-based intelligence,and data-based intelligence to play an important role in computer science,AI,and data science.This article explores similarity-based reasoning(SBR)and proposes three similarity-based inference rules.It then examines similarity computing and analytics,and a multiagent SBR system.The main contributions of this article are:1)Similarity intelligence is discovered from experience-based intelligence consisting of data-based intelligence and knowledge-based intelligence.2)Similarity-based reasoning,computing and analytics can be used to create similarity intelligence.The proposed approach will facilitate research and development of similarity intelligence,similarity computing and analytics,machine learning and case-based reasoning.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
The developed system for eye and face detection using Convolutional Neural Networks(CNN)models,followed by eye classification and voice-based assistance,has shown promising potential in enhancing accessibility for ind...The developed system for eye and face detection using Convolutional Neural Networks(CNN)models,followed by eye classification and voice-based assistance,has shown promising potential in enhancing accessibility for individuals with visual impairments.The modular approach implemented in this research allows for a seamless flow of information and assistance between the different components of the system.This research significantly contributes to the field of accessibility technology by integrating computer vision,natural language processing,and voice technologies.By leveraging these advancements,the developed system offers a practical and efficient solution for assisting blind individuals.The modular design ensures flexibility,scalability,and ease of integration with existing assistive technologies.However,it is important to acknowledge that further research and improvements are necessary to enhance the system’s accuracy and usability.Fine-tuning the CNN models and expanding the training dataset can improve eye and face detection as well as eye classification capabilities.Additionally,incorporating real-time responses through sophisticated natural language understanding techniques and expanding the knowledge base of ChatGPT can enhance the system’s ability to provide comprehensive and accurate responses.Overall,this research paves the way for the development of more advanced and robust systems for assisting visually impaired individuals.By leveraging cutting-edge technologies and integrating them into amodular framework,this research contributes to creating a more inclusive and accessible society for individuals with visual impairments.Future work can focus on refining the system,addressing its limitations,and conducting user studies to evaluate its effectiveness and impact in real-world scenarios.展开更多
In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate pro...In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate production evaluations because of the absence of matrix-macrofracture communication.In addition,most of the existing models are solved analytically based on Laplace transform and numerical inversion.Hence,an approximate analytical solution is derived directly in real-time space considering variable matrix blocks and simultaneous matrix depletion.To simplify the derivation,the simultaneous matrix depletion is divided into two parts:one part feeding the macrofractures and the other part feeding the microfractures.Then,a series of partial differential equations(PDEs)describing the transient flow and boundary conditions are constructed and solved analytically by integration.Finally,a relationship between oil rate and production time in real-time space is obtained.The new model is verified against classical analytical models.When the microfracture system and matrix-macrofracture communication is neglected,the result of the new model agrees with those obtained with the dual-porosity and triple-porosity model,respectively.Certainly,the new model also has an excellent agreement with the numerical model.The model is then applied to two actual tight oil wells completed in western Canada sedimentary basin.After identifying the flow regime,the solution suitably matches the field production data,and the model parameters are determined.Through these output parameters,we can accurately forecast the production and even estimate the petrophysical properties.展开更多
Big data analytics has been widely adopted by large companies to achieve measurable benefits including increased profitability,customer demand forecasting,cheaper development of products,and improved stock control.Sma...Big data analytics has been widely adopted by large companies to achieve measurable benefits including increased profitability,customer demand forecasting,cheaper development of products,and improved stock control.Small and medium sized enterprises(SMEs)are the backbone of the global economy,comprising of 90%of businesses worldwide.However,only 10%SMEs have adopted big data analytics despite the competitive advantage they could achieve.Previous research has analysed the barriers to adoption and a strategic framework has been developed to help SMEs adopt big data analytics.The framework was converted into a scoring tool which has been applied to multiple case studies of SMEs in the UK.This paper documents the process of evaluating the framework based on the structured feedback from a focus group composed of experienced practitioners.The results of the evaluation are presented with a discussion on the results,and the paper concludes with recommendations to improve the scoring tool based on the proposed framework.The research demonstrates that this positioning tool is beneficial for SMEs to achieve competitive advantages by increasing the application of business intelligence and big data analytics.展开更多
We are living in an age of big data,analytics,and artificial intelligence(AI).After reviewing a dozen different books on big data,data analytics,data science,AI,and business intelligence(BI),there are the current ques...We are living in an age of big data,analytics,and artificial intelligence(AI).After reviewing a dozen different books on big data,data analytics,data science,AI,and business intelligence(BI),there are the current questions:(1)What are the relationships between data,analytics,and intelligence?(2)What are the relationships between big data and big data analytics?(3)What is the relationship between BI and data analytics?This article first discusses the heuristics of the Greek philosopher Plato and French mathematician Descartes and how to reshape the world.Then it addresses the above questions based on a Boolean structure,which destructs big data,data analytics,data science,and AI into data,analytics,and intelligence as the Boolean atoms.Data,analytics,and intelligence are reorganized and reassembled,based on the Boolean structure,to data analytics,analytics intelligence,data intelligence,and data analytics intelligence.The research will analyse each of them after examining the system intelligence.The proposed approach in this research might facilitate the research and development of big data,data analytics,AI,and data science.展开更多
In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small in...In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.展开更多
We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the correspon...We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.展开更多
Two soy protein 11S fractions with different surface sulfhydryl contents were prepared.Utilizing analytical ultracentrifugation,the effects of storage time and hydrogen peroxide at different concentrations(0.5-100 mmo...Two soy protein 11S fractions with different surface sulfhydryl contents were prepared.Utilizing analytical ultracentrifugation,the effects of storage time and hydrogen peroxide at different concentrations(0.5-100 mmol/L)on the two 11S fractions were investigated.Results show that after removing 2-mercaptoethanol(2-ME)by size exclusion chromatography,the 11S fraction with high surface sulfhydryl content(2.0 mol sulfhydryl/mol 11S)progressively formed 15S and 21S in dilute solutions during storage at 4℃ for 82 days.While,the 11s fraction with low surface sulfhydryl content(0.2 mol sulfhydryl/mol 11S)was stable under the same condition.Moreover,after treating the 11s with high surface sulfhydryl content with 1 mmol/L H_(2)O_(2),the weight percentage of 15S reached the maximum value of 20%.The 15S induced by air and H_(2)O_(2)could be totally converted to 11S with the addition of 10 mmol/L 2-ME,which could be attributed to that the disulfide bond linking two 11S molecules is on the surface of the 15S and easily accessible to the reducing agent 2-ME.This study helps us to deeply understand the formation mechanism of 15S and the stability of 11S.展开更多
A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show tha...A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show that the peak shear strength and shear stiffness of bolted sandstone joints were significantly reduced after 12 dryewet cycles.The decrease in the shear strength of rough joints is more significant than that of flat joints.Due to the decrease in the strength of the surrounding rock,the deformation characteristics of the bolts are significantly affected by the number of dryewet cycles performed.With an increase in the number of dryewet cycles,the plastic hinge length of the bolt gradually increases,resulting in an increase in the corresponding shear displacement when the bolt breaks.Compared with the tensileeshear failure mode of the bolts in flat joints,the tensileebending failure mode arises for bolts in rough joints.A shear curve model describing the whole process of bolted rock joints is established based on the deterioration of rock mechanical parameters caused by dry‒wet cycles.The model proposed considers the change in the friction angle of the joint surface with the shear displacement,which is applied to the derivation of the model by introducing the dynamic evolutionary friction angle parameter.The reasonably good agreement between a predicted curve and the corresponding experimental curve indicates that this method can effectively predict the shear strength of a bolted rock joint involving rough joint under dryewet cycling conditions.展开更多
Radiation pattern captures the electromagnetic performance of reflector antennas,which is significantly affected by the deformation of the primary reflector due to gravity and the displacement of the secondary reflect...Radiation pattern captures the electromagnetic performance of reflector antennas,which is significantly affected by the deformation of the primary reflector due to gravity and the displacement of the secondary reflector.During the design process of large reflector antennas,a substantial amount of time is often dedicated to iteratively adjusting structural parameters and validating electromagnetic performance.To improve the efficiency of the design process,we first propose an approximate calculation method of optical path difference(OPD)for the deformation of the primary reflector under gravity and the displacement of the secondary reflector.Then an OPD fitting function based on the modified Zernike polynomials is proposed to capture the phase difference of radiation over the aperture plane,based on which the radiation pattern will be obtained quickly by the aperture field integration method.Numerical experiments demonstrate the effectiveness of the proposed quick calculation method for analyzing the radiation pattern of a 10.4 m submillimeter telescope antenna at its highest operating frequency of 856 GHz.In comparison with the numerical simulation method based on GRASP(which is an antenna electromagnetic analysis tool combining physical optics(PO)and physical theory of diffraction(PTD)),the quick calculation method reduces the time for radiation pattern analysis from more than one hour to less than two minutes.Furthermore,the quick calculation method exhibits excellent accuracy for the figure of merit(FOM)of the radiation pattern.Therefore,the proposed quick calculation method can obtain the radiation pattern with high speed and accuracy.Compared to the time-consuming numerical simulation method(PO and PTD),it can be employed for quick analysis of the radiation pattern for the lateral displacement of the secondary reflector and the deformation of the primary reflector under gravity in the design process of a reflector antenna.展开更多
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
文摘Edge technology aims to bring cloud resources(specifically,the computation,storage,and network)to the closed proximity of the edge devices,i.e.,smart devices where the data are produced and consumed.Embedding computing and application in edge devices lead to emerging of two new concepts in edge technology:edge computing and edge analytics.Edge analytics uses some techniques or algorithms to analyse the data generated by the edge devices.With the emerging of edge analytics,the edge devices have become a complete set.Currently,edge analytics is unable to provide full support to the analytic techniques.The edge devices cannot execute advanced and sophisticated analytic algorithms following various constraints such as limited power supply,small memory size,limited resources,etc.This article aims to provide a detailed discussion on edge analytics.The key contributions of the paper are as follows-a clear explanation to distinguish between the three concepts of edge technology:edge devices,edge computing,and edge analytics,along with their issues.In addition,the article discusses the implementation of edge analytics to solve many problems and applications in various areas such as retail,agriculture,industry,and healthcare.Moreover,the research papers of the state-of-the-art edge analytics are rigorously reviewed in this article to explore the existing issues,emerging challenges,research opportunities and their directions,and applications.
文摘This study explores the complex relationship between climate change and human development. The aim is to understand how climate change affects human development across countries, regions, and the global population. Visual analytics were used to examine the impact of various climate change indicators on different aspects of human development. The study highlights the urgent need for climate change action and encourages policymakers to make decisive moves. Climate change adversely affects numerous aspects of daily life, leading to significant consequences that must be addressed through policy changes and global governance recommendations. Key findings include that regions with higher CO2 emissions experience a significantly higher incidence of life-threatening diseases compared to regions with lower emissions. Additionally, higher CO2 emissions correlate with consistent death rates. Increased pollution exposure is associated with a higher prevalence of life-threatening diseases and higher rates of malnutrition. Moreover, greater mineral depletion is linked to more frequent life-threatening diseases, suggesting that industrialization contributes to adverse health effects. These results provide valuable insights for policy and decision-making aimed at mitigating the impact of climate change on human development.
文摘This study explores the integration of predictive analytics in strategic corporate communications, with a specific focus on stakeholder engagement and crisis management. Our mixed-methods approach, which combines a comprehensive literature review with case studies of five multinational corporations, allows us to investigate the applications, challenges, and ethical implications of leveraging predictive models in communication strategies. While our findings reveal significant potential for enhancing personalized content delivery, real-time sentiment analysis, and proactive crisis management, we stress the need for careful consideration of challenges such as data privacy concerns and algorithmic bias. This emphasis on ethical implementation is crucial in navigating the complex landscape of predictive analytics in corporate communications. To address these issues, we propose a framework that prioritizes ethical considerations. Furthermore, we identify key areas for future research, thereby contributing to the evolving field of data-driven communication management.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Korea government(MSIT)(2020R1A4A1018774)。
文摘With the advent of digital therapeutics(DTx),the development of software as a medical device(SaMD)for mobile and wearable devices has gained significant attention in recent years.Existing DTx evaluations,such as randomized clinical trials,mostly focus on verifying the effectiveness of DTx products.To acquire a deeper understanding of DTx engagement and behavioral adherence,beyond efficacy,a large amount of contextual and interaction data from mobile and wearable devices during field deployment would be required for analysis.In this work,the overall flow of the data-driven DTx analytics is reviewed to help researchers and practitioners to explore DTx datasets,to investigate contextual patterns associated with DTx usage,and to establish the(causal)relationship between DTx engagement and behavioral adherence.This review of the key components of datadriven analytics provides novel research directions in the analysis of mobile sensor and interaction datasets,which helps to iteratively improve the receptivity of existing DTx.
基金funding support from the Fundamental Research Funds for the Central Universities(Grant No.2023JBZY024)the National Natural Science Foundation of China(Grant Nos.52208382 and 52278387).
文摘To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.
基金supported by the fund received from Al Baha University,8/1440.
文摘This paper proposes a novel framework to detect cyber-attacks using Machine Learning coupled with User Behavior Analytics.The framework models the user behavior as sequences of events representing the user activities at such a network.The represented sequences are thenfitted into a recurrent neural network model to extract features that draw distinctive behavior for individual users.Thus,the model can recognize frequencies of regular behavior to profile the user manner in the network.The subsequent procedure is that the recurrent neural network would detect abnormal behavior by classifying unknown behavior to either regu-lar or irregular behavior.The importance of the proposed framework is due to the increase of cyber-attacks especially when the attack is triggered from such sources inside the network.Typically detecting inside attacks are much more challenging in that the security protocols can barely recognize attacks from trustful resources at the network,including users.Therefore,the user behavior can be extracted and ultimately learned to recognize insightful patterns in which the regular patterns reflect a normal network workflow.In contrast,the irregular patterns can trigger an alert for a potential cyber-attack.The framework has been fully described where the evaluation metrics have also been introduced.The experimental results show that the approach performed better compared to other approaches and AUC 0.97 was achieved using RNN-LSTM 1.The paper has been concluded with pro-viding the potential directions for future improvements.
基金by Undergraduate Innovation and Entrepreneurship Training Program of Anhui Province(S202312216042)Natural Science Key Research Project of Colleges and Universities in Anhui Province(2023AH051816)General Teaching Research Project of Anhui Province(2022jyxm665).
文摘An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.
文摘Climate change and global warming results in natural hazards, including flash floods. Flash floods can create blue spots;areas where transport networks (roads, tunnels, bridges, passageways) and other engineering structures within them are at flood risk. The economic and social impact of flooding revealed that the damage caused by flash floods leading to blue spots is very high in terms of dollar amount and direct impacts on people’s lives. The impact of flooding within blue spots is either infrastructural or social, affecting lives and properties. Currently, more than 16.1 million properties in the U.S are vulnerable to flooding, and this is projected to increase by 3.2% within the next 30 years. Some models have been developed for flood risks analysis and management including some hydrological models, algorithms and machine learning and geospatial models. The models and methods reviewed are based on location data collection, statistical analysis and computation, and visualization (mapping). This research aims to create blue spots model for the State of Tennessee using ArcGIS visual programming language (model) and data analytics pipeline.
文摘Similarity has been playing an important role in computer science,artificial intelligence(AI)and data science.However,similarity intelligence has been ignored in these disciplines.Similarity intelligence is a process of discovering intelligence through similarity.This article will explore similarity intelligence,similarity-based reasoning,similarity computing and analytics.More specifically,this article looks at the similarity as an intelligence and its impact on a few areas in the real world.It explores similarity intelligence accompanying experience-based intelligence,knowledge-based intelligence,and data-based intelligence to play an important role in computer science,AI,and data science.This article explores similarity-based reasoning(SBR)and proposes three similarity-based inference rules.It then examines similarity computing and analytics,and a multiagent SBR system.The main contributions of this article are:1)Similarity intelligence is discovered from experience-based intelligence consisting of data-based intelligence and knowledge-based intelligence.2)Similarity-based reasoning,computing and analytics can be used to create similarity intelligence.The proposed approach will facilitate research and development of similarity intelligence,similarity computing and analytics,machine learning and case-based reasoning.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
文摘The developed system for eye and face detection using Convolutional Neural Networks(CNN)models,followed by eye classification and voice-based assistance,has shown promising potential in enhancing accessibility for individuals with visual impairments.The modular approach implemented in this research allows for a seamless flow of information and assistance between the different components of the system.This research significantly contributes to the field of accessibility technology by integrating computer vision,natural language processing,and voice technologies.By leveraging these advancements,the developed system offers a practical and efficient solution for assisting blind individuals.The modular design ensures flexibility,scalability,and ease of integration with existing assistive technologies.However,it is important to acknowledge that further research and improvements are necessary to enhance the system’s accuracy and usability.Fine-tuning the CNN models and expanding the training dataset can improve eye and face detection as well as eye classification capabilities.Additionally,incorporating real-time responses through sophisticated natural language understanding techniques and expanding the knowledge base of ChatGPT can enhance the system’s ability to provide comprehensive and accurate responses.Overall,this research paves the way for the development of more advanced and robust systems for assisting visually impaired individuals.By leveraging cutting-edge technologies and integrating them into amodular framework,this research contributes to creating a more inclusive and accessible society for individuals with visual impairments.Future work can focus on refining the system,addressing its limitations,and conducting user studies to evaluate its effectiveness and impact in real-world scenarios.
基金This study was supported by Basic Research Project from Jiangmen Science and Technology Bureau(Grant No.2220002000356)China University of Petroleum(Beijing)(Grand No.2462023BJRC007)The Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110376).
文摘In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate production evaluations because of the absence of matrix-macrofracture communication.In addition,most of the existing models are solved analytically based on Laplace transform and numerical inversion.Hence,an approximate analytical solution is derived directly in real-time space considering variable matrix blocks and simultaneous matrix depletion.To simplify the derivation,the simultaneous matrix depletion is divided into two parts:one part feeding the macrofractures and the other part feeding the microfractures.Then,a series of partial differential equations(PDEs)describing the transient flow and boundary conditions are constructed and solved analytically by integration.Finally,a relationship between oil rate and production time in real-time space is obtained.The new model is verified against classical analytical models.When the microfracture system and matrix-macrofracture communication is neglected,the result of the new model agrees with those obtained with the dual-porosity and triple-porosity model,respectively.Certainly,the new model also has an excellent agreement with the numerical model.The model is then applied to two actual tight oil wells completed in western Canada sedimentary basin.After identifying the flow regime,the solution suitably matches the field production data,and the model parameters are determined.Through these output parameters,we can accurately forecast the production and even estimate the petrophysical properties.
文摘Big data analytics has been widely adopted by large companies to achieve measurable benefits including increased profitability,customer demand forecasting,cheaper development of products,and improved stock control.Small and medium sized enterprises(SMEs)are the backbone of the global economy,comprising of 90%of businesses worldwide.However,only 10%SMEs have adopted big data analytics despite the competitive advantage they could achieve.Previous research has analysed the barriers to adoption and a strategic framework has been developed to help SMEs adopt big data analytics.The framework was converted into a scoring tool which has been applied to multiple case studies of SMEs in the UK.This paper documents the process of evaluating the framework based on the structured feedback from a focus group composed of experienced practitioners.The results of the evaluation are presented with a discussion on the results,and the paper concludes with recommendations to improve the scoring tool based on the proposed framework.The research demonstrates that this positioning tool is beneficial for SMEs to achieve competitive advantages by increasing the application of business intelligence and big data analytics.
基金supported partially by the Papua New Guinea Science and Technology Secretariat(PNGSTS)under the project grant No.1-3962 PNGSTS.
文摘We are living in an age of big data,analytics,and artificial intelligence(AI).After reviewing a dozen different books on big data,data analytics,data science,AI,and business intelligence(BI),there are the current questions:(1)What are the relationships between data,analytics,and intelligence?(2)What are the relationships between big data and big data analytics?(3)What is the relationship between BI and data analytics?This article first discusses the heuristics of the Greek philosopher Plato and French mathematician Descartes and how to reshape the world.Then it addresses the above questions based on a Boolean structure,which destructs big data,data analytics,data science,and AI into data,analytics,and intelligence as the Boolean atoms.Data,analytics,and intelligence are reorganized and reassembled,based on the Boolean structure,to data analytics,analytics intelligence,data intelligence,and data analytics intelligence.The research will analyse each of them after examining the system intelligence.The proposed approach in this research might facilitate the research and development of big data,data analytics,AI,and data science.
基金supported by the Opening Project of Guangdong Province Key Laboratory of Cyber-Physical System(20168030301008)supported by the National Natural Science Foundation of China(11126266)+4 种基金the Natural Science Foundation of Guangdong Province(2016A030313390)the Quality Engineering Project of Guangdong Province(SCAU-2021-69)the SCAU Fund for High-level University Buildingsupported by the National Key Research and Development Program of China(2020YFA0712500)the National Natural Science Foundation of China(11971496,12126609)。
文摘In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.
基金LMP acknowledges financial support from ANID through Convocatoria Nacional Subvención a Instalación en la Academia Convocatoria Año 2021,Grant SA77210040。
文摘We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.
基金supported by the National Natural Science Foundation of China(No.22173092 and No.21674107).
文摘Two soy protein 11S fractions with different surface sulfhydryl contents were prepared.Utilizing analytical ultracentrifugation,the effects of storage time and hydrogen peroxide at different concentrations(0.5-100 mmol/L)on the two 11S fractions were investigated.Results show that after removing 2-mercaptoethanol(2-ME)by size exclusion chromatography,the 11S fraction with high surface sulfhydryl content(2.0 mol sulfhydryl/mol 11S)progressively formed 15S and 21S in dilute solutions during storage at 4℃ for 82 days.While,the 11s fraction with low surface sulfhydryl content(0.2 mol sulfhydryl/mol 11S)was stable under the same condition.Moreover,after treating the 11s with high surface sulfhydryl content with 1 mmol/L H_(2)O_(2),the weight percentage of 15S reached the maximum value of 20%.The 15S induced by air and H_(2)O_(2)could be totally converted to 11S with the addition of 10 mmol/L 2-ME,which could be attributed to that the disulfide bond linking two 11S molecules is on the surface of the 15S and easily accessible to the reducing agent 2-ME.This study helps us to deeply understand the formation mechanism of 15S and the stability of 11S.
基金the Natural Science Foundation of China(Grant Nos.42302314 and 52078427)the Open foundation of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2022K001).
文摘A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show that the peak shear strength and shear stiffness of bolted sandstone joints were significantly reduced after 12 dryewet cycles.The decrease in the shear strength of rough joints is more significant than that of flat joints.Due to the decrease in the strength of the surrounding rock,the deformation characteristics of the bolts are significantly affected by the number of dryewet cycles performed.With an increase in the number of dryewet cycles,the plastic hinge length of the bolt gradually increases,resulting in an increase in the corresponding shear displacement when the bolt breaks.Compared with the tensileeshear failure mode of the bolts in flat joints,the tensileebending failure mode arises for bolts in rough joints.A shear curve model describing the whole process of bolted rock joints is established based on the deterioration of rock mechanical parameters caused by dry‒wet cycles.The model proposed considers the change in the friction angle of the joint surface with the shear displacement,which is applied to the derivation of the model by introducing the dynamic evolutionary friction angle parameter.The reasonably good agreement between a predicted curve and the corresponding experimental curve indicates that this method can effectively predict the shear strength of a bolted rock joint involving rough joint under dryewet cycling conditions.
基金supported by Open Fund of State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences。
文摘Radiation pattern captures the electromagnetic performance of reflector antennas,which is significantly affected by the deformation of the primary reflector due to gravity and the displacement of the secondary reflector.During the design process of large reflector antennas,a substantial amount of time is often dedicated to iteratively adjusting structural parameters and validating electromagnetic performance.To improve the efficiency of the design process,we first propose an approximate calculation method of optical path difference(OPD)for the deformation of the primary reflector under gravity and the displacement of the secondary reflector.Then an OPD fitting function based on the modified Zernike polynomials is proposed to capture the phase difference of radiation over the aperture plane,based on which the radiation pattern will be obtained quickly by the aperture field integration method.Numerical experiments demonstrate the effectiveness of the proposed quick calculation method for analyzing the radiation pattern of a 10.4 m submillimeter telescope antenna at its highest operating frequency of 856 GHz.In comparison with the numerical simulation method based on GRASP(which is an antenna electromagnetic analysis tool combining physical optics(PO)and physical theory of diffraction(PTD)),the quick calculation method reduces the time for radiation pattern analysis from more than one hour to less than two minutes.Furthermore,the quick calculation method exhibits excellent accuracy for the figure of merit(FOM)of the radiation pattern.Therefore,the proposed quick calculation method can obtain the radiation pattern with high speed and accuracy.Compared to the time-consuming numerical simulation method(PO and PTD),it can be employed for quick analysis of the radiation pattern for the lateral displacement of the secondary reflector and the deformation of the primary reflector under gravity in the design process of a reflector antenna.