Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effecti...Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.展开更多
High purity anatase nano-TiO2 powders with high photocatalytic activity were prepared by a hydrothermal synthesis method. X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), ultraviol...High purity anatase nano-TiO2 powders with high photocatalytic activity were prepared by a hydrothermal synthesis method. X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), ultraviolet-visible (UV-Vis) light absorption spectrum and photoluminescence (PL) spectrum were adopted to characterize the catalyst. Effects of temperature, time and sol concentration of hydrothermal synthesis on particle size and phases were investigated. Photocatalytic activities in the degradation of Rhodamine B Dye were studied. The experimental results indicated that photocatalytic activity of the nano-TiO2 powers was much higher than that of P25 (Degussa).展开更多
Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence...Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence spectroscopy. Visible (-S00 nm) and near-infrared (NIR, -830 nm) emissions were monitored to give insight into the photoinduced charges of anatase and rutile in the junction, respectively, New fast photoluminescence decay components appeared in the visible emission of futile-phase dominated TiO2 and in the NIR emission of many mixed phase TiO2samples. The fast decays confirmed that the charge separation occurred at the phase junction. The visible emission intensity from the mixed phase TiO2 increased, revealing that charge transfer from rutile to anatase was the main pathway. The charge separation slowed the microsecond time scale photolumines- cence decay rate for charge carriers in both anatase and rutile. However, the millisecond decay of the charge carriers in anatase TiO2 was accelerated, while there was almost no change in the charge carrier dynamics of rutile TiO2. Thus, charge separation at the anatase/rutile phase junction caused an increase in the charge carrier concentration on a microsecond time scale, because of slower electron-hole recombination. The enhanced photocatalytic activity previously observed at ana- tase/rutile phase junctions is likely caused by the improved charge carrier dynamics we report here. These findings may contribute to the development of improved photocatalytic materials.展开更多
TiO2 nanosheets mainly exposed (001) facet were prepared through a hydrothermal process with HF as the morphology-directing agent. Ru and RuO2 species were loaded by photo-deposition methods to prepare the photocata...TiO2 nanosheets mainly exposed (001) facet were prepared through a hydrothermal process with HF as the morphology-directing agent. Ru and RuO2 species were loaded by photo-deposition methods to prepare the photocatalysts. The structural features of the catalysts were characterized by X-ray di raction, transmission electron microscopy, inductively cou-pled plasma atomic emission spectrum, and H2 Temperature-programmed reduction. The photocatalytic property was studied by the O2 evolution from water oxidation, which was examined with respect to the in uences of Ru contents as well as the oxidation and reduction treatments, suggesting the charge separation effect of the Ru species co-catalysts on di erent facets of TiO2 nanosheets. In contrast to Ru/TiO2 and RuO2/TiO2 with the single deposited co-catalyst, the optimized catalyst 0.5%Ru-1.0%RuO2/TiO2 with dual co-catalysts achieved a much improved catalytic performance, in terms of the synergetic effect of dual co-catalysts and the enhanced charge separation effect.展开更多
Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i...Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.展开更多
The impact of N-and X(X=S,Se,Te)-codoping on electronic properties of anatase TiO2 has been systematically investigated using density functional theory (DFT).The optimized geometry shows that there is large lattic...The impact of N-and X(X=S,Se,Te)-codoping on electronic properties of anatase TiO2 has been systematically investigated using density functional theory (DFT).The optimized geometry shows that there is large lattice expansion for the codoped anatase TiO2 due to large atomic radius of the codoped atom.The calculated substitution energies indicate that incorporation of X(X =S,Se,Te) into N-doped bulk TiO2 can not promote synergistic effect on N after substituting for Ti,whcreas it is bctter after substituting for O.According to the total density of states (DOS) and corresponding partial DOS (PDOS),it can be seen that substituting X(X =S,Se,Te) for O,N 2p orbital is strongly hybridized with impurity states (S 3p,Se 4p,Te 5p).After substituting X(X=S,Se,Te) for Ti,conduction band is mainly dominated by Ti 3d orbit and S 3p (Se 4p or Te 5p)-N 2p-Ti 3d hybridized states are formed.Based on Bader analysis,it can be indicated that the electron transfer is from N to X(X=S,Se,Te) if substituting X(X=S,Se,Te) for O,but it is opposite if substitute X(X=S,Se,Te) for Ti.展开更多
Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by...Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-visible diffuse spectroscopy. It was found that the crystallinity, grain size, and {001}/{101} ratio of the samples can be increased by raising the calcination temperature from 500 to 800℃. The higher crystallinity and {001}/{101} facet ratio resulted in an increase in both aqueous and gas-phase photocatalytic activities, by inhibiting the recombination and separation of electrons and holes. After selecting two TiO2 samples with high crystallinity and {001}/{101} ratio, Au nanoparticles were decorated on their surfaces, and the photocatalytic activity of the resulting samples under visible light illumination was studied. It was found that the visible light-induced photocatalytic activity increased by 2.6 and 4.8 times, respectively, upon Au decoration of the samples prepared by calcination of TiOF2 at 700 and 800℃.展开更多
The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalyti...The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.展开更多
Nanoporous anatase TiO2 crystalline particles coupled with Keggin or Wells-Dawson unit, H3PW12O40/TiO2 or H6P2W18O62/TiO2, were prepared at a low temperature (200℃ ) using sol-gel method combined with hydrothermal ...Nanoporous anatase TiO2 crystalline particles coupled with Keggin or Wells-Dawson unit, H3PW12O40/TiO2 or H6P2W18O62/TiO2, were prepared at a low temperature (200℃ ) using sol-gel method combined with hydrothermal treatment at programmed temperature. The as-prepared composites have uniform anatase phase, and they exhibit both micrand mesoporosities with pore sizes of 0.6 and 4.0 nm, respectively, and their average size is lower than 10 nm. Photocatalytic tests show the composites exhibit relatively higher photocatalytic activities to decompose the organocholorine pesticide hexachlorobenzene(HCB) than anatase TiO2, the starting polyoxotungstates, and EuEOa/TiO2 prepared by using sol-gel method, and this was attributed to ( 1 ) the synergistic effect of photoactive anatase TiO2 with the polyoxotungstate, and (2) the fascinating physical and chemical properties of the porous materials.展开更多
Anatase TiO2 sol was synthesized under mild conditions (75℃ and ambient pressure) by hydrolysis of titaniumn-butoxide in abundant acidic aqueous solution and subsequent reflux to enhance crystallization. At room te...Anatase TiO2 sol was synthesized under mild conditions (75℃ and ambient pressure) by hydrolysis of titaniumn-butoxide in abundant acidic aqueous solution and subsequent reflux to enhance crystallization. At room temperature and in ambient atmosphere, crystalline TiO2 thin films were deposited on polymethylmethacrylate (PMMA), SiO2-coated PMMA and SiO2-coated silicone rubber substrates from the as-prepared TiO2 sol by a dip-coating process. SiO2 layers prior to TiO2 thin films on polymer substrates could not only protect the substrates from the photocatalytic decomposition of the TiO2 thin films but also enhance the adhesion of the TiO2 thin films to the substrates. Field-emission type scanning electron microscope (FE-SEM) investigations revealed that the average particle sizes of the nanoparticles composing the TiO2 thin films were about 35-47 nm. The TiO2 thin films exhibited high photocatalytic activities in the degradation of reactive brilliant red dye X-3B in aqueous solution under aerated conditions. The preparation process of photocatalytic TiO2 thin films on the polymer substrates was quite simple and a low temperature route.展开更多
Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the T...Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.展开更多
Heterojunction fabrication is one of the most effective strategies for enhancing the photocatalytic performance of semiconductor photocatalysts. Here, TiO2(B)/anatase nanowires with interfacial heterostructures were...Heterojunction fabrication is one of the most effective strategies for enhancing the photocatalytic performance of semiconductor photocatalysts. Here, TiO2(B)/anatase nanowires with interfacial heterostructures were prepared through a three-step synthesis method, including hydrothermal treatment, H+ exchange, and annealing. The phase structures of the nanowires in the bulk and on the surface during the annealing process were monitored by XRD and UV-Raman spectroscopy, respectively. SEM and TEM results indicate that the TiO2(B) nanowires partially collapse and transform into anatase during the annealing process and the heterophase junction structure is formed simultaneously. On the basis of the phase structure together with morphology data, a phase-transformation mechanism was proposed. Photocatalytic activity was evaluated by hydrogen production and pollutant-degradation assays. The optimized structure of the photocatalyst contains 24% TiO2(B) in the bulk and 100% anatase on the surface. The charge-carrier behavior during the photocatalytic process was investigated by photocurrent, electrochemical impedance spectroscopy(EIS), and photoluminescence(PL) spectroscopy, which revealed that the heterophase-junction structure in the bulk was responsible for the highly efficient charge separation and transportation, etc.; the anatase on the surface took control of the high surface-reaction activity.展开更多
Rechargeable aluminum ion battery(AIB) with high theoretical specific capacity, abundant elements and low cost engages considerable attention as a promising next generation energy storage and conversion system. Nevert...Rechargeable aluminum ion battery(AIB) with high theoretical specific capacity, abundant elements and low cost engages considerable attention as a promising next generation energy storage and conversion system. Nevertheless, to date, one of the major barriers to pursuit better AIB is the limited applicable cathode materials with the ability to store aluminum highly reversibly. Herein, a highly reversible AIB is proposed using mesoporous TiO2 microparticles(M-TiO2) as the cathode material. The improved performance of Ti O2/Al battery is ascribed to the high ionic conductivity and material stability, which is caused by the stable architecture with a mesoporous microstructure and no random aggregation of secondary particles. In addition, we conducted detailed characterization to gain deeper understanding of the Al^(3+) storage mechanism in anatase Ti O2 for AIB. Our findings demonstrate clearly that Al^(3+)can be reversibly stored in anatase TiO2 by intercalation reactions based on ionic liquid electrolyte. Especially, DFT calculations were used to investigate the accurate insertion sites of aluminum ions in M-Ti O2 and the volume changes of M-TiO2 cells during discharging. As for the controversial side reactions in AIBs, in this work, by normalized calculation, we confirm that M-Ti O2 alone participate in the redox reaction. Moreover, cyclic voltammetry(CV) test was performed to investigate the pseudocapacitive behavior.展开更多
Highly oxidation. SEM analysis ordered anatase titania nanotube method was used to characterize arrays (TINT) were fabricated by anodic the morphology of the prepared samples. TiNT samples doped with Cu ions were pr...Highly oxidation. SEM analysis ordered anatase titania nanotube method was used to characterize arrays (TINT) were fabricated by anodic the morphology of the prepared samples. TiNT samples doped with Cu ions were prepared by home-made Metal Vapor Vacuum Arc ions sources (MEVVA, BNU, China) implanter. Photo-electric response and methyl orange decomposition ability of implanted samples under UV and visible light were tested, and the results indicated that the performance of Cu/TiNT enhanced significantly under visible light; it was noteworthy that the photocurrent density of A-Cu/TiNT was 0.102 mA/cm^2, which was 115 times that of pure TINT, and degradation ability of TiNT also strongly enhanced under visible light. In a word, the absorption spectrum of implanted anatase titania shifted to a longer wavelength region. Theoretic study on Cu-doped anatase based on density functional theory was carried out in this paper to validate the experiment results. The calculation results are depicted as follows: Intermittent energy band appeared around the Fermi energy after doping with Cu metal, the width of which was 0.35 eV and the location of valence and conduction bands shifted to the lower energy level by 0.22 eV; more excitation and jump routes were opened for the electrons. The narrowed band gaps allowed the photons with lower energy (at longer wavelength, such as visible light) to be absorbed, which accorded well with the experimental results.展开更多
Effect of rare earth oxide Tb2O3 additive on transformation behavior and grain growth of anatase and photocatalytic activity for TiO2/(O′+β′)-Sialon multi-phase ceramic was investigated and the mechanism was dis...Effect of rare earth oxide Tb2O3 additive on transformation behavior and grain growth of anatase and photocatalytic activity for TiO2/(O′+β′)-Sialon multi-phase ceramic was investigated and the mechanism was discussed. X-ray diffractometer (XRD) was employed for the analysis of phase composition, grain size and lattice parameters of anatase. Photocatalytic activity of the composites was investigated through its photocatalytic degradation to methylene blue (MB) solution. The results showed that Tb2O3 significantly inhibited the transformarion process, which displayed an appreciably intensified effect with increasing Tb2O3 content. It could be attributed to the coaction of the active and passive influence mechanisms. For Tb3+ entering TiO2 lattice, replacing Ti4+ accelerated the transformation, whereas the lattice distortion caused by it was unfavorable for the process. On the other hand, the redox reaction between Tb3+ and TiO2 as well as the Tb2O3 deposited on the surface of TiO2 inhibited the transformation. The addition of Tb2O3 effectively restrained the grain growth of TiO2 and the effect became significant with the increase of its content. With the increase of Tb2O3 addition, the photocatalytic activity of the catalysts increased and then dropped after reaching the maximum at about 2%. The action mechanism of Tb2O3 could be attributed to its optical properties and its effect on phase transformation, grain growth and crystal structure of TiO2.展开更多
Formic acid photodegradation is one of the most important reactions in organic pollution control, and helps to improve the hydrogen generation efficiency in titanium dioxide catalyzed water photodecomposition. Based o...Formic acid photodegradation is one of the most important reactions in organic pollution control, and helps to improve the hydrogen generation efficiency in titanium dioxide catalyzed water photodecomposition. Based on density functional theory and Reax FF molecular dynamics, the adsorption, diffusion and activation of formic acid on the different anatase TiO(101),(001),(010) surfaces are investigated.The result shows that the adsorption of COOH on anatase TiOsurface shrinks the energy gap between the dehydrogenation intermediate COOH and HCOO. On the anatase TiO(101) surface, the formic acid breaks the O–H bond at the first step with activation energy 0.24 eV, and the consequent break of α-H become much easier with activation energy 0.77 eV. The dissociation of α-H is the determination step of the HCOOH decomposition.展开更多
The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalys...The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalysts was proposed.The process included alkali (NaOH) hydrothermal treatment,sulfuric acid washing,and calcination.Anatase TiO_(2) in spent SCR catalyst was reconstructed by forming Na_(2)Ti_(2)O_(4)(OH)_(2) nanosheet during NaOH hydrothermal treatment and H_(2)Ti_(2)O_(4)(OH)_(2) during sulfuric acid washing.Anatase TiO_(2) was recovered by decomposing H_(2)Ti_(2)O_(4)(OH)_(2) during calcination.The surface pore properties of the recovered anatase TiO_(2) were adequately improved,and its specific surface area (SSA) and pore volume (PV) were 85 m^(2)·g^(-1)and 0.40 cm^(3)·g^(-1),respectively.The elements affecting catalytic abilities(arsenic and sodium) were also removed.The SCR catalyst was resynthesized using the recovered TiO_(2) as raw material,and its catalytic performance in NO selective reduction was comparable with that of commercial SCR catalyst.This study realized the sustainable recycling of anatase TiO_(2) from spent SCR catalyst.展开更多
Quasiparticle band structures of the defective anatase TiO2 bulk with O vacancy, Ti interstitial and H interstitial are investigated by the GW method within many-body Green's function theory. The computed direct band...Quasiparticle band structures of the defective anatase TiO2 bulk with O vacancy, Ti interstitial and H interstitial are investigated by the GW method within many-body Green's function theory. The computed direct band gap of the perfect anatase bulk is 4.3 eV, far larger than the experimental optical absorption edge (3.2 eV). We found that this can be ascribed to the inherent defects in anatase which drag the conduction band (CB) edge down. The occupied band-gap states induced by these defects locate close to the CB edge, exclud- ing the possible contribution of these bulk defects to the deep band-gap state below CB as observed in experiments.展开更多
文摘Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.
基金Funded by the Academic Leader Program of Wuhan City(201150530146)the Foundamental Research Funds for the Central Universities(2010-11-020)
文摘High purity anatase nano-TiO2 powders with high photocatalytic activity were prepared by a hydrothermal synthesis method. X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), ultraviolet-visible (UV-Vis) light absorption spectrum and photoluminescence (PL) spectrum were adopted to characterize the catalyst. Effects of temperature, time and sol concentration of hydrothermal synthesis on particle size and phases were investigated. Photocatalytic activities in the degradation of Rhodamine B Dye were studied. The experimental results indicated that photocatalytic activity of the nano-TiO2 powers was much higher than that of P25 (Degussa).
基金supported by the National Natural Science Foundation of China (21203185, 21373209)the National Basic Research Program of China (2014CB239400)
文摘Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence spectroscopy. Visible (-S00 nm) and near-infrared (NIR, -830 nm) emissions were monitored to give insight into the photoinduced charges of anatase and rutile in the junction, respectively, New fast photoluminescence decay components appeared in the visible emission of futile-phase dominated TiO2 and in the NIR emission of many mixed phase TiO2samples. The fast decays confirmed that the charge separation occurred at the phase junction. The visible emission intensity from the mixed phase TiO2 increased, revealing that charge transfer from rutile to anatase was the main pathway. The charge separation slowed the microsecond time scale photolumines- cence decay rate for charge carriers in both anatase and rutile. However, the millisecond decay of the charge carriers in anatase TiO2 was accelerated, while there was almost no change in the charge carrier dynamics of rutile TiO2. Thus, charge separation at the anatase/rutile phase junction caused an increase in the charge carrier concentration on a microsecond time scale, because of slower electron-hole recombination. The enhanced photocatalytic activity previously observed at ana- tase/rutile phase junctions is likely caused by the improved charge carrier dynamics we report here. These findings may contribute to the development of improved photocatalytic materials.
文摘TiO2 nanosheets mainly exposed (001) facet were prepared through a hydrothermal process with HF as the morphology-directing agent. Ru and RuO2 species were loaded by photo-deposition methods to prepare the photocatalysts. The structural features of the catalysts were characterized by X-ray di raction, transmission electron microscopy, inductively cou-pled plasma atomic emission spectrum, and H2 Temperature-programmed reduction. The photocatalytic property was studied by the O2 evolution from water oxidation, which was examined with respect to the in uences of Ru contents as well as the oxidation and reduction treatments, suggesting the charge separation effect of the Ru species co-catalysts on di erent facets of TiO2 nanosheets. In contrast to Ru/TiO2 and RuO2/TiO2 with the single deposited co-catalyst, the optimized catalyst 0.5%Ru-1.0%RuO2/TiO2 with dual co-catalysts achieved a much improved catalytic performance, in terms of the synergetic effect of dual co-catalysts and the enhanced charge separation effect.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.11034006, No.21273208, and No.21473168), the Anhui Provincial Natural Sci- ence Foundation (No.1408085QB26), the hmdamental Research Funds for the Central Universities, the China Postdoctoral Science Foundation (No.2012M511409), and the Supercomputing Center of Chinese Academy of Sciences, Shanghai and USTC Supercomputer Cen- ters.
文摘Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.
基金Natural Science Foundation of Shanxi Province(No.2009011014)
文摘The impact of N-and X(X=S,Se,Te)-codoping on electronic properties of anatase TiO2 has been systematically investigated using density functional theory (DFT).The optimized geometry shows that there is large lattice expansion for the codoped anatase TiO2 due to large atomic radius of the codoped atom.The calculated substitution energies indicate that incorporation of X(X =S,Se,Te) into N-doped bulk TiO2 can not promote synergistic effect on N after substituting for Ti,whcreas it is bctter after substituting for O.According to the total density of states (DOS) and corresponding partial DOS (PDOS),it can be seen that substituting X(X =S,Se,Te) for O,N 2p orbital is strongly hybridized with impurity states (S 3p,Se 4p,Te 5p).After substituting X(X=S,Se,Te) for Ti,conduction band is mainly dominated by Ti 3d orbit and S 3p (Se 4p or Te 5p)-N 2p-Ti 3d hybridized states are formed.Based on Bader analysis,it can be indicated that the electron transfer is from N to X(X=S,Se,Te) if substituting X(X=S,Se,Te) for O,but it is opposite if substitute X(X=S,Se,Te) for Ti.
基金supported by the National Natural Science Foundation of China(51772230,51461135004)the Hubei Foreign Science and Technology Cooperation Project(2017AHB059)the Japan Society for the Promotion of Science(JSPS)for an Invitational Fellowship for Foreign Researchers(L16531)~~
文摘Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-visible diffuse spectroscopy. It was found that the crystallinity, grain size, and {001}/{101} ratio of the samples can be increased by raising the calcination temperature from 500 to 800℃. The higher crystallinity and {001}/{101} facet ratio resulted in an increase in both aqueous and gas-phase photocatalytic activities, by inhibiting the recombination and separation of electrons and holes. After selecting two TiO2 samples with high crystallinity and {001}/{101} ratio, Au nanoparticles were decorated on their surfaces, and the photocatalytic activity of the resulting samples under visible light illumination was studied. It was found that the visible light-induced photocatalytic activity increased by 2.6 and 4.8 times, respectively, upon Au decoration of the samples prepared by calcination of TiOF2 at 700 and 800℃.
基金Foundation item: The National Natural Science Foundation of China(No. 20371023)
文摘The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.
基金Project supported by the Natural Science Fund Council of Heilongjiang Province (B200608)
文摘Nanoporous anatase TiO2 crystalline particles coupled with Keggin or Wells-Dawson unit, H3PW12O40/TiO2 or H6P2W18O62/TiO2, were prepared at a low temperature (200℃ ) using sol-gel method combined with hydrothermal treatment at programmed temperature. The as-prepared composites have uniform anatase phase, and they exhibit both micrand mesoporosities with pore sizes of 0.6 and 4.0 nm, respectively, and their average size is lower than 10 nm. Photocatalytic tests show the composites exhibit relatively higher photocatalytic activities to decompose the organocholorine pesticide hexachlorobenzene(HCB) than anatase TiO2, the starting polyoxotungstates, and EuEOa/TiO2 prepared by using sol-gel method, and this was attributed to ( 1 ) the synergistic effect of photoactive anatase TiO2 with the polyoxotungstate, and (2) the fascinating physical and chemical properties of the porous materials.
文摘Anatase TiO2 sol was synthesized under mild conditions (75℃ and ambient pressure) by hydrolysis of titaniumn-butoxide in abundant acidic aqueous solution and subsequent reflux to enhance crystallization. At room temperature and in ambient atmosphere, crystalline TiO2 thin films were deposited on polymethylmethacrylate (PMMA), SiO2-coated PMMA and SiO2-coated silicone rubber substrates from the as-prepared TiO2 sol by a dip-coating process. SiO2 layers prior to TiO2 thin films on polymer substrates could not only protect the substrates from the photocatalytic decomposition of the TiO2 thin films but also enhance the adhesion of the TiO2 thin films to the substrates. Field-emission type scanning electron microscope (FE-SEM) investigations revealed that the average particle sizes of the nanoparticles composing the TiO2 thin films were about 35-47 nm. The TiO2 thin films exhibited high photocatalytic activities in the degradation of reactive brilliant red dye X-3B in aqueous solution under aerated conditions. The preparation process of photocatalytic TiO2 thin films on the polymer substrates was quite simple and a low temperature route.
文摘Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.
基金supported by the National Natural Science Foundation of China(21603134)Young Talent Fund of University Association for Science and Technology in Shaanxi,China(20150104)+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ2023)the Fundamental Research Funds for the Central Universities(GK201603032)~~
文摘Heterojunction fabrication is one of the most effective strategies for enhancing the photocatalytic performance of semiconductor photocatalysts. Here, TiO2(B)/anatase nanowires with interfacial heterostructures were prepared through a three-step synthesis method, including hydrothermal treatment, H+ exchange, and annealing. The phase structures of the nanowires in the bulk and on the surface during the annealing process were monitored by XRD and UV-Raman spectroscopy, respectively. SEM and TEM results indicate that the TiO2(B) nanowires partially collapse and transform into anatase during the annealing process and the heterophase junction structure is formed simultaneously. On the basis of the phase structure together with morphology data, a phase-transformation mechanism was proposed. Photocatalytic activity was evaluated by hydrogen production and pollutant-degradation assays. The optimized structure of the photocatalyst contains 24% TiO2(B) in the bulk and 100% anatase on the surface. The charge-carrier behavior during the photocatalytic process was investigated by photocurrent, electrochemical impedance spectroscopy(EIS), and photoluminescence(PL) spectroscopy, which revealed that the heterophase-junction structure in the bulk was responsible for the highly efficient charge separation and transportation, etc.; the anatase on the surface took control of the high surface-reaction activity.
基金supported by the National Basic Research Program of China (Grant No. 2015CB251100)the Shell Global Solutions International B.V. (Agreement No. PT76419)。
文摘Rechargeable aluminum ion battery(AIB) with high theoretical specific capacity, abundant elements and low cost engages considerable attention as a promising next generation energy storage and conversion system. Nevertheless, to date, one of the major barriers to pursuit better AIB is the limited applicable cathode materials with the ability to store aluminum highly reversibly. Herein, a highly reversible AIB is proposed using mesoporous TiO2 microparticles(M-TiO2) as the cathode material. The improved performance of Ti O2/Al battery is ascribed to the high ionic conductivity and material stability, which is caused by the stable architecture with a mesoporous microstructure and no random aggregation of secondary particles. In addition, we conducted detailed characterization to gain deeper understanding of the Al^(3+) storage mechanism in anatase Ti O2 for AIB. Our findings demonstrate clearly that Al^(3+)can be reversibly stored in anatase TiO2 by intercalation reactions based on ionic liquid electrolyte. Especially, DFT calculations were used to investigate the accurate insertion sites of aluminum ions in M-Ti O2 and the volume changes of M-TiO2 cells during discharging. As for the controversial side reactions in AIBs, in this work, by normalized calculation, we confirm that M-Ti O2 alone participate in the redox reaction. Moreover, cyclic voltammetry(CV) test was performed to investigate the pseudocapacitive behavior.
基金Supported by the National Natural Science Foundation of China (No. 10975020)Key Laboratory of BeamTechnology and Material Modification of Ministry of Education, Beijing Normal University
文摘Highly oxidation. SEM analysis ordered anatase titania nanotube method was used to characterize arrays (TINT) were fabricated by anodic the morphology of the prepared samples. TiNT samples doped with Cu ions were prepared by home-made Metal Vapor Vacuum Arc ions sources (MEVVA, BNU, China) implanter. Photo-electric response and methyl orange decomposition ability of implanted samples under UV and visible light were tested, and the results indicated that the performance of Cu/TiNT enhanced significantly under visible light; it was noteworthy that the photocurrent density of A-Cu/TiNT was 0.102 mA/cm^2, which was 115 times that of pure TINT, and degradation ability of TiNT also strongly enhanced under visible light. In a word, the absorption spectrum of implanted anatase titania shifted to a longer wavelength region. Theoretic study on Cu-doped anatase based on density functional theory was carried out in this paper to validate the experiment results. The calculation results are depicted as follows: Intermittent energy band appeared around the Fermi energy after doping with Cu metal, the width of which was 0.35 eV and the location of valence and conduction bands shifted to the lower energy level by 0.22 eV; more excitation and jump routes were opened for the electrons. The narrowed band gaps allowed the photons with lower energy (at longer wavelength, such as visible light) to be absorbed, which accorded well with the experimental results.
基金supported by the National Natural Science Foundation of China (50202004)
文摘Effect of rare earth oxide Tb2O3 additive on transformation behavior and grain growth of anatase and photocatalytic activity for TiO2/(O′+β′)-Sialon multi-phase ceramic was investigated and the mechanism was discussed. X-ray diffractometer (XRD) was employed for the analysis of phase composition, grain size and lattice parameters of anatase. Photocatalytic activity of the composites was investigated through its photocatalytic degradation to methylene blue (MB) solution. The results showed that Tb2O3 significantly inhibited the transformarion process, which displayed an appreciably intensified effect with increasing Tb2O3 content. It could be attributed to the coaction of the active and passive influence mechanisms. For Tb3+ entering TiO2 lattice, replacing Ti4+ accelerated the transformation, whereas the lattice distortion caused by it was unfavorable for the process. On the other hand, the redox reaction between Tb3+ and TiO2 as well as the Tb2O3 deposited on the surface of TiO2 inhibited the transformation. The addition of Tb2O3 effectively restrained the grain growth of TiO2 and the effect became significant with the increase of its content. With the increase of Tb2O3 addition, the photocatalytic activity of the catalysts increased and then dropped after reaching the maximum at about 2%. The action mechanism of Tb2O3 could be attributed to its optical properties and its effect on phase transformation, grain growth and crystal structure of TiO2.
基金the Ministry of Science and Technology of China,the 'Strategic Priority Research Program' of the Chinese Academy of Sciences,the National Natural Science Foundation of China
基金supported by the National Natural Science Foundation of China(NSFC-2117622)
文摘Formic acid photodegradation is one of the most important reactions in organic pollution control, and helps to improve the hydrogen generation efficiency in titanium dioxide catalyzed water photodecomposition. Based on density functional theory and Reax FF molecular dynamics, the adsorption, diffusion and activation of formic acid on the different anatase TiO(101),(001),(010) surfaces are investigated.The result shows that the adsorption of COOH on anatase TiOsurface shrinks the energy gap between the dehydrogenation intermediate COOH and HCOO. On the anatase TiO(101) surface, the formic acid breaks the O–H bond at the first step with activation energy 0.24 eV, and the consequent break of α-H become much easier with activation energy 0.77 eV. The dissociation of α-H is the determination step of the HCOOH decomposition.
基金supported by the National Natural Science Foundation of China (52274411)the National Natural Science Foundation of China (51904287)the Innovation Academy for Green Manufacture,Chinese Academy of Sciences (IAGM2022D11)。
文摘The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalysts was proposed.The process included alkali (NaOH) hydrothermal treatment,sulfuric acid washing,and calcination.Anatase TiO_(2) in spent SCR catalyst was reconstructed by forming Na_(2)Ti_(2)O_(4)(OH)_(2) nanosheet during NaOH hydrothermal treatment and H_(2)Ti_(2)O_(4)(OH)_(2) during sulfuric acid washing.Anatase TiO_(2) was recovered by decomposing H_(2)Ti_(2)O_(4)(OH)_(2) during calcination.The surface pore properties of the recovered anatase TiO_(2) were adequately improved,and its specific surface area (SSA) and pore volume (PV) were 85 m^(2)·g^(-1)and 0.40 cm^(3)·g^(-1),respectively.The elements affecting catalytic abilities(arsenic and sodium) were also removed.The SCR catalyst was resynthesized using the recovered TiO_(2) as raw material,and its catalytic performance in NO selective reduction was comparable with that of commercial SCR catalyst.This study realized the sustainable recycling of anatase TiO_(2) from spent SCR catalyst.
文摘Quasiparticle band structures of the defective anatase TiO2 bulk with O vacancy, Ti interstitial and H interstitial are investigated by the GW method within many-body Green's function theory. The computed direct band gap of the perfect anatase bulk is 4.3 eV, far larger than the experimental optical absorption edge (3.2 eV). We found that this can be ascribed to the inherent defects in anatase which drag the conduction band (CB) edge down. The occupied band-gap states induced by these defects locate close to the CB edge, exclud- ing the possible contribution of these bulk defects to the deep band-gap state below CB as observed in experiments.
基金the National Natural Science Foundation of China,the Program for New Century Excellent Talents in University,the National Science Foundation Project of CQ CSTC,the Fundamental Research Funds for the Central Universities