In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses...In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.展开更多
In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presen...In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presents a support parameter selection method that aims to allow deformation as a control objective,which was applied to the tunnel located in Muzailing Highway,Min County,Dingxi City,Gansu Province,China.Through theoretical analysis,we have identified five factors that influence pre-stressing anchorages.The selection of mechanical parameters for the rock mass was carried out using an inverse analysis method.Compared with the measured data,the maximum displacement error of the numerical simulation results was only 0.07 m.The length of anchor cable,circumferential spacing of anchor cable,longitudinal spacing,and pre-stress index are adopted as the input parameters for the support vector machine neural network model based on particle swarm optimization(PSO-LSSVM).Besides,the vault subsidence and the maximum deformation of surrounding rock are considered as output values(performance indices).The goodness of fit between the predicted values and the simulated values exceeds 0.9.Finally,all support parameters within the acceptable deformation range are calculated.The optimal support variables are derived by considering the construction cost and duration.The field application results show that it is feasible to construct the sample database utilizing the numerical simulation approach by taking the displacement as the control target and using the neural network to specify the appropriate support parameters.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51927807,52074164,42277174,42077267 and 42177130)the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)China University of Mining and Technology(Beijing)Top Innovative Talent Cultivation Fund for Doctoral Students(No.BBJ2023048)。
文摘In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.
基金supported by the Open Fund of State Key Laboratory of High speed Railway Track Technology(2022YJ127-1)National Natural Science Foundation of China(52104125,41941018)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2022JQ-304)the Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)。
文摘In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presents a support parameter selection method that aims to allow deformation as a control objective,which was applied to the tunnel located in Muzailing Highway,Min County,Dingxi City,Gansu Province,China.Through theoretical analysis,we have identified five factors that influence pre-stressing anchorages.The selection of mechanical parameters for the rock mass was carried out using an inverse analysis method.Compared with the measured data,the maximum displacement error of the numerical simulation results was only 0.07 m.The length of anchor cable,circumferential spacing of anchor cable,longitudinal spacing,and pre-stress index are adopted as the input parameters for the support vector machine neural network model based on particle swarm optimization(PSO-LSSVM).Besides,the vault subsidence and the maximum deformation of surrounding rock are considered as output values(performance indices).The goodness of fit between the predicted values and the simulated values exceeds 0.9.Finally,all support parameters within the acceptable deformation range are calculated.The optimal support variables are derived by considering the construction cost and duration.The field application results show that it is feasible to construct the sample database utilizing the numerical simulation approach by taking the displacement as the control target and using the neural network to specify the appropriate support parameters.