A control and test system of a landing gear drop test rig is developed considering the drop test specifica- tions for the "Seagull 300" multi-functional amphibious airplane. In order to realize the automation of dro...A control and test system of a landing gear drop test rig is developed considering the drop test specifica- tions for the "Seagull 300" multi-functional amphibious airplane. In order to realize the automation of drop test process, a servo system is proposed and programmable logic controller(PLC) technology is used. Several key technologies for measuring the horizontal load, the vertical load and the transient rotational speed are studied. According to the requirements of CCAR-23-R3, the drop test of landing gears of the "Seagull 300" airplane is accomplished. Test results show that the system has a high accuracy of data collection. The system is stable and reliable. The drop test satisfies the requirements of the drop test specifications and the results can be used as the certification of airworthiness for this kind of airplane.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
To fit in with the developing requirement of int and communication of protective relays, a protection egrated functions of protection measurement, control measurement and control system based on DeviceNet fieldbus is ...To fit in with the developing requirement of int and communication of protective relays, a protection egrated functions of protection measurement, control measurement and control system based on DeviceNet fieldbus is designed. The communication mechanism of DeviceNet is studied and data trigger modes, communication connection, message types and other key technologies are analyzed. The object modeling and device description of the device are realized too. Results of network test, dynamic simulation and test in the field indicate that this system can accomplish all the communication tasks in real time and can make precise response to every kind of faults of the motor, transformer, line and capacitor. Moreover, this system has higher measurement precision and better control capability.展开更多
In this paper,the network reliability of an actual digital instrument and control system (DICS) network is analyzed by using GO-FLOW methodology (GFM).The evaluations of common-cause failure (CCF) and uncertainty are ...In this paper,the network reliability of an actual digital instrument and control system (DICS) network is analyzed by using GO-FLOW methodology (GFM).The evaluations of common-cause failure (CCF) and uncertainty are incorporated.Three significant CCF groups (real time servers,gateways,reactor protection system) and three typical time intervals (10 min,1 h,and 24 h) are selected in the analysis.It is concluded that the network contribution of CCF accounts for over 68% of the system failure probability.The result indicates that GFM is suitable for the network reliability analysis.展开更多
In order to improve the compatibility of laser-induced breakdown spectroscopy( LIBS) instrument for different types of parts and optimize the analysis and testing processes,a modularized automatic measurement and cont...In order to improve the compatibility of laser-induced breakdown spectroscopy( LIBS) instrument for different types of parts and optimize the analysis and testing processes,a modularized automatic measurement and control system was developed. Based on the characteristics of each LIBS component, the following development steps have been performed:( 1) a summary of characteristic parameters of the component are established;( 2) the integration mechanism of multiple electrical interfaces is designed;( 3) the component control instruction library is developed. The experimental results indicate that the measurement and control system is compatible with most LIBS parts in the market.Spectrometer and laser can be compatible with at least three different types of parts. In addition,a multilayer iterative testing process is designed to improve the efficiency of optimization process of LIBS parameters. The experimental results have shown that the automatic optimization of the delay time compared to the manual testing provides significant gain in testing efficiency. The range of delay time in the experiments is 1. 28 to 10. 28 μs and the step value is 1,0. 5,0. 2 and 0. 1 μs. The gain in testing efficiency has been found to be increased by 73. 76%,75. 93%,78. 81% and 80. 42%,respectively.展开更多
This paper presents a method of NTP-based time synchronization and a strategy of master-slave server structured time synchronization to ensure the test and control system of aeroengine to be time-synchronized. Based o...This paper presents a method of NTP-based time synchronization and a strategy of master-slave server structured time synchronization to ensure the test and control system of aeroengine to be time-synchronized. Based on time synchronization, the hierarchy and the integration of the measurement and control system of aeroengine are investigated. In result, our method is successfully applied for multiple front-end tests in a simulative altitude test facility of aeroengine.展开更多
The thesis researches the safety infonnation and control system (SICS) design principle and introduces engineering application in CPR1000 nuclear power station in China. The SICS provides sufficient control and moni...The thesis researches the safety infonnation and control system (SICS) design principle and introduces engineering application in CPR1000 nuclear power station in China. The SICS provides sufficient control and monitoring means to bring and maintain the plant in a safe state as a backup of main computerized control mean (MCM), in any plant conditions that are probable during a planed or unplanned unavailability of the MCM. The successful engineering applications of SICS in different digital I&C system platform are introduced in the paper. The thesis gives the research conclusion for new general SICS of digital I&C system.展开更多
With the rapid development of wireless technologies, it is possible for Chinese greenhouses to be equipped with wireless sensor networks due to their low-cost, simplicity and mobility. In the current study, we compare...With the rapid development of wireless technologies, it is possible for Chinese greenhouses to be equipped with wireless sensor networks due to their low-cost, simplicity and mobility. In the current study, we compared the advantages of ZigBee with other two similar wireless networking protocols, Wi-Fi and Bluetooth, and proposed a wireless solution for green- house monitoring and control system based on ZigBee technology. As an explorative application of ZigBee technology in Chinese greenhouse, it may promote Chinese protected agriculture.展开更多
A dynamic Web application, which can help the departments of enterprise to collaborate with each other conveniently, is proposed. Several popular design solutions are introduced at first. Then, dynamic Web system is c...A dynamic Web application, which can help the departments of enterprise to collaborate with each other conveniently, is proposed. Several popular design solutions are introduced at first. Then, dynamic Web system is chosen for developing the file access and control system. Finally, the paper gives the detailed process of the design and implementation of the system, which includes some key problems such as solutions of document management and system security. Additionally, the limitations of the system as well as the suggestions of further improvement are also explained.展开更多
According to the construction of current coal mine monitoring and control systems in China, the paper proposes three kinds of applicable schemes of integrating PLC and DCS systems with field bus technology to digitize...According to the construction of current coal mine monitoring and control systems in China, the paper proposes three kinds of applicable schemes of integrating PLC and DCS systems with field bus technology to digitize the system and to improve the flexibility and extent of the system. Essentially, the paper introduces the integration of FCS on I/O layers. Based on a real coal mine safety-monitoring and control system applied with a CAN field bus, the major technology of system relays and extensions is discussed. We believe that one of the most applicable methods is currently replacing the connection between function-stations and field-sensors with a CAN bus on I/0 layers for system integration.展开更多
This paper presents a multi-interface embedded server architecture for remote real-time monitoring system and distributed monitoring applications. In the scheme,an embedded microprocessor( LPC3250 from NXP) is chosen ...This paper presents a multi-interface embedded server architecture for remote real-time monitoring system and distributed monitoring applications. In the scheme,an embedded microprocessor( LPC3250 from NXP) is chosen as the CPU of the embedded server with a linux operation system( OS) environment. The embedded server provides multiple interfaces for supporting various application scenarios. The whole network is based on local area network and adopts the Browser / Server( B / S) model. The monitoring and control node is as a browser endpoint and the remote node with an embedded server is as a server endpoint. Users can easily acquire various sensors information through writing Internet protocol address of remote node on the computer browser. Compared with client / server( C / S) mode,B / S model needs less maintain and can be applicable to large user group. In addition,a simple network management protocol( SNMP) is used for management of devices in Internet protocol( IP) networks. The results of the demonstration experiment show that the proposed system gives good support to manage the network from different user terminals and allows the users to better interact with the ambient environment.展开更多
Adopting distributed control architecture is the important developmentdirection for shop floor management and control system, is also the requirement of making it agile,intelligent and concurrent. Some key problems in...Adopting distributed control architecture is the important developmentdirection for shop floor management and control system, is also the requirement of making it agile,intelligent and concurrent. Some key problems in achieving distributed control architecture areresearched. An activity model of shop floor is presented as the requirement definition of theprototype system. The multi-agent based software architecture is constructed. How the core part inshop floor management and control system, production plan and scheduling is achieved. Thecooperation of different agents is illustrated. Finally, the implementation of the prototype systemis narrated.展开更多
In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct...In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct the intelligent energy management and control system(IEMCS).The application architecture and function module planning are analyzed and designed.Furthermore,the IEMCS scheme is not unique due to the fuzziness of customer demand and the understanding deviation of designer to customer demand in the design stage.Scheme assessment is of great significance for the normal subsequent implementation of the system.A fuzzy assessment method for IEMCS scheme alternatives is proposed to achieve scheme selection.Fuzzy group decision using triangular fuzzy number to express the vague assessment of experts is adopted to determine the index value.TOPSIS is modified by replacing Euclidean distance with contact vector distance in IEMCS scheme alternative assessment.An experiment with eight IEMCS scheme alternatives in a heavy equipment industrial park is given for the validation.The experiment result shows that eight IEMCS scheme alternatives can be assessed.Through the comparisons with other methods,the reliability of the results obtained by the proposed method is discussed.展开更多
Remarkable progress has been made in infection prevention and control(IPC)in many countries,but some gaps emerged in the context of the coronavirus disease 2019(COVID-19)pandemic.Core capabilities such as standard cli...Remarkable progress has been made in infection prevention and control(IPC)in many countries,but some gaps emerged in the context of the coronavirus disease 2019(COVID-19)pandemic.Core capabilities such as standard clinical precautions and tracing the source of infection were the focus of IPC in medical institutions during the pandemic.Therefore,the core competences of IPC professionals during the pandemic,and how these contributed to successful prevention and control of the epidemic,should be studied.To investigate,using a systematic review and cluster analysis,fundamental improvements in the competences of infection control and prevention professionals that may be emphasized in light of the COVID-19 pandemic.We searched the PubMed,Embase,Cochrane Library,Web of Science,CNKI,WanFang Data,and CBM databases for original articles exploring core competencies of IPC professionals during the COVID-19 pandemic(from January 1,2020 to February 7,2023).Weiciyun software was used for data extraction and the Donohue formula was followed to distinguish high-frequency technical terms.Cluster analysis was performed using the within-group linkage method and squared Euclidean distance as the metric to determine the priority competencies for development.We identified 46 studies with 29 high-frequency technical terms.The most common term was“infection prevention and control training”(184 times,17.3%),followed by“hand hygiene”(172 times,16.2%).“Infection prevention and control in clinical practice”was the most-reported core competency(367 times,34.5%),followed by“microbiology and surveillance”(292 times,27.5%).Cluster analysis showed two key areas of competence:Category 1(program management and leadership,patient safety and occupational health,education and microbiology and surveillance)and Category 2(IPC in clinical practice).During the COVID-19 pandemic,IPC program management and leadership,microbiology and surveillance,education,patient safety,and occupational health were the most important focus of development and should be given due consideration by IPC professionals.展开更多
Threshold decision is an important function of nuclear instrument control system based on physical parameters threshold decision. Because the conventional decision methods lack correlation with time and conditions, by...Threshold decision is an important function of nuclear instrument control system based on physical parameters threshold decision. Because the conventional decision methods lack correlation with time and conditions, by analyzing the existing methods, some optimized methods are adopted. Considering safety, those methods are improved in data processing algorithms, floating threshold with multiple values, association with specific working condition, etc. These measures im- prove the nuclear instrument control system in fault tolerance and fault diagnosis, especially, the shutdown number of nucle- ar power plant decreases.展开更多
Herein,a matching method for varied epidemic phase characteristics and appropriate strategies is presented,aiming at the complexities of the novel coronavirus disease 2019 pandemic and the hysteresis of strategies.The...Herein,a matching method for varied epidemic phase characteristics and appropriate strategies is presented,aiming at the complexities of the novel coronavirus disease 2019 pandemic and the hysteresis of strategies.The classical diffusion dynamic models of the epidemic spread are compared.Furthermore,the Bass diffusion model is selected to study more characteristics of an epidemic,such as the diversities in regional internal and external infection rates.Thereafter,the classical division method vis-à-vis a pandemic life cycle is improved.A specific approach is proposed to portray more detailed characteristics of the pandemic by dividing it into more phases.Next,a four-level epidemic prevention and control measure system is concretized.The applicable phases and strategic effectiveness of each measure are integrated into the different phases of the pandemic life cycle.Finally,the matching method is applied to analyze two cases of the spread of the outbreak in cities and significant events.The findings provide a certain reference for the effectiveness of the matching method in the post-peak epidemic period.展开更多
Improving the energy performance of buildings will prove vital for countries worldwide to reduce their energy consumption and emissions.A key player in reaching this goal is building automation and control,as having w...Improving the energy performance of buildings will prove vital for countries worldwide to reduce their energy consumption and emissions.A key player in reaching this goal is building automation and control,as having well-designed and operated building automation and control systems(BACS)provide large capabilities in optimizing the energy performance of different systems.In this regard,building owners and planners must be able to assess and evaluate the current status of their BACS and identify potential improvements.While there has been a large block of work done in Denmark along with regulations aiming to audit the overall building performance and individual systems characteristics,very little has been done in the field of auditing the building automation and control system and evaluating its structure and operation patterns.This lack of systematic BACS auditing and evaluation in Danish buildings is addressed in this work with the first implementation and evaluation of the eu.bac System methodology in a university office building.The building was found to comply with the lowest automation and control class E.Two BACS retrofit packages were proposed and evaluated,and energy savings up to 28.5%are reported.The preliminary assessment results reported demonstrate the potential of building automation and control retrofit measures in a combined holistic improvement package alongside building envelope upgrade.In addition,the impact of the eu.bac System improvements and labeling on the building’s classification based on the recent Danish building regulation BR18 is evaluated.The study discusses the feasibility of eu.bac System tool implementation in Danish buildings and suggests improvements.It also correlates and compares the eu.bac System audit to the upcoming European SRI instrument.In light of the huge efforts to digitalize the Danish energy sector,ensuring proper design and operation of BACS is of great importance.Thus,a systematic and methodical BACS auditing and evaluation methodology will be a crucial part of buildings’initial and retro-commissioning platforms.展开更多
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
Objective: To evaluate the role of prevention and control strategies for nosocomial infection in a tertiary teaching hospital during the sudden outbreak of Corona Virus Disease 2019 (COVID-19). Methods: The hospital i...Objective: To evaluate the role of prevention and control strategies for nosocomial infection in a tertiary teaching hospital during the sudden outbreak of Corona Virus Disease 2019 (COVID-19). Methods: The hospital initiated an emergency plan involving multi-departmental defense and control. It adopted a series of nosocomial infection prevention and control measures, including strengthening pre-examination and triage, optimizing the consultation process, improving the hospital’s architectural composition, implementing graded risk management, enhancing personal protection, and implementing staff training and supervision. Descriptive research was used to evaluate the short-term effects of these in-hospital prevention and control strategies. The analysis compared changes in related evaluation indicators between January 24, 2020 and February 12, 2020 (Chinese Lunar New Year’s Eve 2020 to lunar January 19) and the corresponding lunar period of the previous year. Results: Compared to the same period last year, the outpatient fever rate increased by 1.85-fold (P P Conclusion: The nosocomial infection prevention and control strategies implemented during this specific period improved the detection and control abilities for the COVID-19 source of infection and enhanced the compliance with measures. This likely contributed significantly to avoiding the occurrence of nosocomial infection.展开更多
In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally c...In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.展开更多
基金Supported by the Aviation Science Foundation of China(2009ZA52001)the Research Foundation(20070287033)~~
文摘A control and test system of a landing gear drop test rig is developed considering the drop test specifica- tions for the "Seagull 300" multi-functional amphibious airplane. In order to realize the automation of drop test process, a servo system is proposed and programmable logic controller(PLC) technology is used. Several key technologies for measuring the horizontal load, the vertical load and the transient rotational speed are studied. According to the requirements of CCAR-23-R3, the drop test of landing gears of the "Seagull 300" airplane is accomplished. Test results show that the system has a high accuracy of data collection. The system is stable and reliable. The drop test satisfies the requirements of the drop test specifications and the results can be used as the certification of airworthiness for this kind of airplane.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
文摘To fit in with the developing requirement of int and communication of protective relays, a protection egrated functions of protection measurement, control measurement and control system based on DeviceNet fieldbus is designed. The communication mechanism of DeviceNet is studied and data trigger modes, communication connection, message types and other key technologies are analyzed. The object modeling and device description of the device are realized too. Results of network test, dynamic simulation and test in the field indicate that this system can accomplish all the communication tasks in real time and can make precise response to every kind of faults of the motor, transformer, line and capacitor. Moreover, this system has higher measurement precision and better control capability.
基金Supported by Nuclear Safety Research Association and Tohoku University for Nuclear Researchers Exchange Program 2010National High Technology and Development Program ("863"Program)of China(No.2007AA041009)
文摘In this paper,the network reliability of an actual digital instrument and control system (DICS) network is analyzed by using GO-FLOW methodology (GFM).The evaluations of common-cause failure (CCF) and uncertainty are incorporated.Three significant CCF groups (real time servers,gateways,reactor protection system) and three typical time intervals (10 min,1 h,and 24 h) are selected in the analysis.It is concluded that the network contribution of CCF accounts for over 68% of the system failure probability.The result indicates that GFM is suitable for the network reliability analysis.
基金National M ajor Scientific Instruments and Equipment Development Special Funds,China(No.2011YQ030113)
文摘In order to improve the compatibility of laser-induced breakdown spectroscopy( LIBS) instrument for different types of parts and optimize the analysis and testing processes,a modularized automatic measurement and control system was developed. Based on the characteristics of each LIBS component, the following development steps have been performed:( 1) a summary of characteristic parameters of the component are established;( 2) the integration mechanism of multiple electrical interfaces is designed;( 3) the component control instruction library is developed. The experimental results indicate that the measurement and control system is compatible with most LIBS parts in the market.Spectrometer and laser can be compatible with at least three different types of parts. In addition,a multilayer iterative testing process is designed to improve the efficiency of optimization process of LIBS parameters. The experimental results have shown that the automatic optimization of the delay time compared to the manual testing provides significant gain in testing efficiency. The range of delay time in the experiments is 1. 28 to 10. 28 μs and the step value is 1,0. 5,0. 2 and 0. 1 μs. The gain in testing efficiency has been found to be increased by 73. 76%,75. 93%,78. 81% and 80. 42%,respectively.
文摘This paper presents a method of NTP-based time synchronization and a strategy of master-slave server structured time synchronization to ensure the test and control system of aeroengine to be time-synchronized. Based on time synchronization, the hierarchy and the integration of the measurement and control system of aeroengine are investigated. In result, our method is successfully applied for multiple front-end tests in a simulative altitude test facility of aeroengine.
文摘The thesis researches the safety infonnation and control system (SICS) design principle and introduces engineering application in CPR1000 nuclear power station in China. The SICS provides sufficient control and monitoring means to bring and maintain the plant in a safe state as a backup of main computerized control mean (MCM), in any plant conditions that are probable during a planed or unplanned unavailability of the MCM. The successful engineering applications of SICS in different digital I&C system platform are introduced in the paper. The thesis gives the research conclusion for new general SICS of digital I&C system.
基金Project (No. 2005C22060) supported by the Science and Technology Department of Zhejiang Province, China
文摘With the rapid development of wireless technologies, it is possible for Chinese greenhouses to be equipped with wireless sensor networks due to their low-cost, simplicity and mobility. In the current study, we compared the advantages of ZigBee with other two similar wireless networking protocols, Wi-Fi and Bluetooth, and proposed a wireless solution for green- house monitoring and control system based on ZigBee technology. As an explorative application of ZigBee technology in Chinese greenhouse, it may promote Chinese protected agriculture.
基金Supported by the National Natural Science Foun-dation of China (60503036)
文摘A dynamic Web application, which can help the departments of enterprise to collaborate with each other conveniently, is proposed. Several popular design solutions are introduced at first. Then, dynamic Web system is chosen for developing the file access and control system. Finally, the paper gives the detailed process of the design and implementation of the system, which includes some key problems such as solutions of document management and system security. Additionally, the limitations of the system as well as the suggestions of further improvement are also explained.
文摘According to the construction of current coal mine monitoring and control systems in China, the paper proposes three kinds of applicable schemes of integrating PLC and DCS systems with field bus technology to digitize the system and to improve the flexibility and extent of the system. Essentially, the paper introduces the integration of FCS on I/O layers. Based on a real coal mine safety-monitoring and control system applied with a CAN field bus, the major technology of system relays and extensions is discussed. We believe that one of the most applicable methods is currently replacing the connection between function-stations and field-sensors with a CAN bus on I/0 layers for system integration.
基金Sponsored by the National High Technology Research and Development Program(Grant No.2012AA02A604)
文摘This paper presents a multi-interface embedded server architecture for remote real-time monitoring system and distributed monitoring applications. In the scheme,an embedded microprocessor( LPC3250 from NXP) is chosen as the CPU of the embedded server with a linux operation system( OS) environment. The embedded server provides multiple interfaces for supporting various application scenarios. The whole network is based on local area network and adopts the Browser / Server( B / S) model. The monitoring and control node is as a browser endpoint and the remote node with an embedded server is as a server endpoint. Users can easily acquire various sensors information through writing Internet protocol address of remote node on the computer browser. Compared with client / server( C / S) mode,B / S model needs less maintain and can be applicable to large user group. In addition,a simple network management protocol( SNMP) is used for management of devices in Internet protocol( IP) networks. The results of the demonstration experiment show that the proposed system gives good support to manage the network from different user terminals and allows the users to better interact with the ambient environment.
基金This project is supported by National Natural Science Foundation of China(No.50105006,No.59990470)(No.2001AA412140).
文摘Adopting distributed control architecture is the important developmentdirection for shop floor management and control system, is also the requirement of making it agile,intelligent and concurrent. Some key problems in achieving distributed control architecture areresearched. An activity model of shop floor is presented as the requirement definition of theprototype system. The multi-agent based software architecture is constructed. How the core part inshop floor management and control system, production plan and scheduling is achieved. Thecooperation of different agents is illustrated. Finally, the implementation of the prototype systemis narrated.
文摘In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct the intelligent energy management and control system(IEMCS).The application architecture and function module planning are analyzed and designed.Furthermore,the IEMCS scheme is not unique due to the fuzziness of customer demand and the understanding deviation of designer to customer demand in the design stage.Scheme assessment is of great significance for the normal subsequent implementation of the system.A fuzzy assessment method for IEMCS scheme alternatives is proposed to achieve scheme selection.Fuzzy group decision using triangular fuzzy number to express the vague assessment of experts is adopted to determine the index value.TOPSIS is modified by replacing Euclidean distance with contact vector distance in IEMCS scheme alternative assessment.An experiment with eight IEMCS scheme alternatives in a heavy equipment industrial park is given for the validation.The experiment result shows that eight IEMCS scheme alternatives can be assessed.Through the comparisons with other methods,the reliability of the results obtained by the proposed method is discussed.
基金The National Natural Science Foundation of China,Grant/Award Number:52178080Major Research Project of the Hospital Management Research Institute of the National Health Commission,Grant/Award Number:GY2023011National Institute of Hospital Administration Management of China,Grant/Award Number:GY2023049。
文摘Remarkable progress has been made in infection prevention and control(IPC)in many countries,but some gaps emerged in the context of the coronavirus disease 2019(COVID-19)pandemic.Core capabilities such as standard clinical precautions and tracing the source of infection were the focus of IPC in medical institutions during the pandemic.Therefore,the core competences of IPC professionals during the pandemic,and how these contributed to successful prevention and control of the epidemic,should be studied.To investigate,using a systematic review and cluster analysis,fundamental improvements in the competences of infection control and prevention professionals that may be emphasized in light of the COVID-19 pandemic.We searched the PubMed,Embase,Cochrane Library,Web of Science,CNKI,WanFang Data,and CBM databases for original articles exploring core competencies of IPC professionals during the COVID-19 pandemic(from January 1,2020 to February 7,2023).Weiciyun software was used for data extraction and the Donohue formula was followed to distinguish high-frequency technical terms.Cluster analysis was performed using the within-group linkage method and squared Euclidean distance as the metric to determine the priority competencies for development.We identified 46 studies with 29 high-frequency technical terms.The most common term was“infection prevention and control training”(184 times,17.3%),followed by“hand hygiene”(172 times,16.2%).“Infection prevention and control in clinical practice”was the most-reported core competency(367 times,34.5%),followed by“microbiology and surveillance”(292 times,27.5%).Cluster analysis showed two key areas of competence:Category 1(program management and leadership,patient safety and occupational health,education and microbiology and surveillance)and Category 2(IPC in clinical practice).During the COVID-19 pandemic,IPC program management and leadership,microbiology and surveillance,education,patient safety,and occupational health were the most important focus of development and should be given due consideration by IPC professionals.
基金Research Project of Hunan Province Education Department(No.14C0972)
文摘Threshold decision is an important function of nuclear instrument control system based on physical parameters threshold decision. Because the conventional decision methods lack correlation with time and conditions, by analyzing the existing methods, some optimized methods are adopted. Considering safety, those methods are improved in data processing algorithms, floating threshold with multiple values, association with specific working condition, etc. These measures im- prove the nuclear instrument control system in fault tolerance and fault diagnosis, especially, the shutdown number of nucle- ar power plant decreases.
基金National Key R&D Program of China(No.2021ZD0111200)National Science Foundation of China(Grant No.72174099),High-tech Discipline Construction Fundings for Universities in Beijing(Safety Science and Engineering).
文摘Herein,a matching method for varied epidemic phase characteristics and appropriate strategies is presented,aiming at the complexities of the novel coronavirus disease 2019 pandemic and the hysteresis of strategies.The classical diffusion dynamic models of the epidemic spread are compared.Furthermore,the Bass diffusion model is selected to study more characteristics of an epidemic,such as the diversities in regional internal and external infection rates.Thereafter,the classical division method vis-à-vis a pandemic life cycle is improved.A specific approach is proposed to portray more detailed characteristics of the pandemic by dividing it into more phases.Next,a four-level epidemic prevention and control measure system is concretized.The applicable phases and strategic effectiveness of each measure are integrated into the different phases of the pandemic life cycle.Finally,the matching method is applied to analyze two cases of the spread of the outbreak in cities and significant events.The findings provide a certain reference for the effectiveness of the matching method in the post-peak epidemic period.
基金supported by the BuildCOM project,funded by the Danish Energy Agency under the Energy Technology Development and Demonstration Program(EUDP),ID number:64019-0081.
文摘Improving the energy performance of buildings will prove vital for countries worldwide to reduce their energy consumption and emissions.A key player in reaching this goal is building automation and control,as having well-designed and operated building automation and control systems(BACS)provide large capabilities in optimizing the energy performance of different systems.In this regard,building owners and planners must be able to assess and evaluate the current status of their BACS and identify potential improvements.While there has been a large block of work done in Denmark along with regulations aiming to audit the overall building performance and individual systems characteristics,very little has been done in the field of auditing the building automation and control system and evaluating its structure and operation patterns.This lack of systematic BACS auditing and evaluation in Danish buildings is addressed in this work with the first implementation and evaluation of the eu.bac System methodology in a university office building.The building was found to comply with the lowest automation and control class E.Two BACS retrofit packages were proposed and evaluated,and energy savings up to 28.5%are reported.The preliminary assessment results reported demonstrate the potential of building automation and control retrofit measures in a combined holistic improvement package alongside building envelope upgrade.In addition,the impact of the eu.bac System improvements and labeling on the building’s classification based on the recent Danish building regulation BR18 is evaluated.The study discusses the feasibility of eu.bac System tool implementation in Danish buildings and suggests improvements.It also correlates and compares the eu.bac System audit to the upcoming European SRI instrument.In light of the huge efforts to digitalize the Danish energy sector,ensuring proper design and operation of BACS is of great importance.Thus,a systematic and methodical BACS auditing and evaluation methodology will be a crucial part of buildings’initial and retro-commissioning platforms.
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.
文摘Objective: To evaluate the role of prevention and control strategies for nosocomial infection in a tertiary teaching hospital during the sudden outbreak of Corona Virus Disease 2019 (COVID-19). Methods: The hospital initiated an emergency plan involving multi-departmental defense and control. It adopted a series of nosocomial infection prevention and control measures, including strengthening pre-examination and triage, optimizing the consultation process, improving the hospital’s architectural composition, implementing graded risk management, enhancing personal protection, and implementing staff training and supervision. Descriptive research was used to evaluate the short-term effects of these in-hospital prevention and control strategies. The analysis compared changes in related evaluation indicators between January 24, 2020 and February 12, 2020 (Chinese Lunar New Year’s Eve 2020 to lunar January 19) and the corresponding lunar period of the previous year. Results: Compared to the same period last year, the outpatient fever rate increased by 1.85-fold (P P Conclusion: The nosocomial infection prevention and control strategies implemented during this specific period improved the detection and control abilities for the COVID-19 source of infection and enhanced the compliance with measures. This likely contributed significantly to avoiding the occurrence of nosocomial infection.
文摘In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.