To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference a...To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.展开更多
Classical wisdom of wave-particle duality regulates that a quantum object shows either the particle or wave nature but never both.Consequently,it would be impossible to observe simultaneously the complete wave and par...Classical wisdom of wave-particle duality regulates that a quantum object shows either the particle or wave nature but never both.Consequently,it would be impossible to observe simultaneously the complete wave and particle nature of the quantum object.Mathematically the principle requests that the interference visibility V and whichpath distinguishability D satisfy an orthodox limit of V^2+D^2≤1.The present work reports a new waveparticle duality test experiment using single photons in a modified Mach-Zehnder interferometer to demonstrate the possibility of breaking the limit.The key element of the interferometer is a weakly scattering total internal reflection prism surface,which exhibits a pronounced single-photon interference with a visibility of up to 0.97and simultaneously provides a path distinguishability of 0.83.Apparently,the result of V^2+D^2≈1.63 exceeds the orthodox limit set by the classical principle of wave-particle duality for single photons.We expect that more delicate experiments in the future should be able to demonstrate the ultimate limit of V^2+D^2≈2 and shed new light on the foundations of con temporary quantum mechanics.展开更多
Using the modal dispersion equation with the phase-integral approaches, and con-sidering an eddy (or water mass) as a sound channel disturbance, the effects of the undisturbed channel, cold-core eddy and warm-core edd...Using the modal dispersion equation with the phase-integral approaches, and con-sidering an eddy (or water mass) as a sound channel disturbance, the effects of the undisturbed channel, cold-core eddy and warm-core eddy on the acoustic propagation characteristics are dis-cussed. According to the solutions of the dispersion equation, the relation between the modal Parameters (phase velocity, group velocity and interference distance) and the eddy intensity is obtained. When the plane wave (with an incident angle a) travels toward the center of a warm-core eddy (disturbed intensity BM ) 'double channel phenomenon' will take place in case of sin2 α < BM < 2(1 - cosα), and then the modal phase velocity and interference distance will have anomalous changes which are completely different from the case of the cold-core eddy.展开更多
To mitigate the deleterious effects of clutter and jammer, modern radars have adopted adaptive processing techniques such as constant false alarm rate(CFAR) detectors which are widely used to prevent clutter and noise...To mitigate the deleterious effects of clutter and jammer, modern radars have adopted adaptive processing techniques such as constant false alarm rate(CFAR) detectors which are widely used to prevent clutter and noise interference from saturating the radar’s display and preventing targets from being obscured.This paper concerns with the detection analysis of the novel version of CFAR schemes(cell-averaging generalized trimmed-mean,CATM) in the presence of additional outlying targets other than the target under research. The spurious targets as well as the tested one are assumed to be fluctuating in accordance with the χ~2-model with two-degrees of freedom. In this situation, the processor performance is enclosed by the swerling models(SWI and SWII). Between these bounds, there is an important class of target fluctuation which is known as moderately fluctuating targets. The detection of this class has many practical applications. Structure of the CATM detector is described briefly. Detection performances for optimal, CAM, CA, trimmed-mean(TM) and ordered-statistic(OS) CFAR strategies have been analyzed and compared for desired probability of false alarm and determined size of the reference window. False alarm rate performance of these processors has been evaluated for different strengths of interfering signal and the effect of correlation among the target returns on the detection and false alarm performances has also been studied. Our numerical results show that, with a proper choice of trimming parameters,the novel model CAM presents an ideal detection performance outweighing that of the Neyman-Pearson detector on condition that the tested target obeys the SWII model in its fluctuation. Although the new models CAS and CAM can be treated as special cases of the CATM algorithm, their multi-target performance is modest even it has an enhancement relative to that of the classical CAcheme. Additionally, they fail to maintain the false alarm rate constant when the operating environment is of type target multiplicity. Moreover, the non-coherent integration of M pulses ameliorates the processor performance either it operates in homogeneous or multi-target environment.展开更多
Apart from usual quantization steps on the ballistic conductance of quasi-one-dimensional conductor, an additional plateau-like feature appears at a fraction of about 0.7 below the first conductance step in GaAs-based...Apart from usual quantization steps on the ballistic conductance of quasi-one-dimensional conductor, an additional plateau-like feature appears at a fraction of about 0.7 below the first conductance step in GaAs-based quantum point contacts (QPCs). Despite a tremendous amount of research on this anomalous feature, its origin remains still unclear. Here, a unique model of this anomaly is proposed relying on fundamental principles of quantum mechanics. It is noticed that just after opening a quasi-1D conducting channel in the QPC a single electron travels the channel at a time, and such electron can be—in principle—observed. The act of observation destroys superposition of spin states, in which the electron otherwise exists, and this suppresses their quantum interference. It is shown that then the QPC-conductance is reduced by a factor of 0.74. “Visibility” of electron is enhanced if the electron spends some time in the channel due to resonant transmission. Electron’s resonance can also explain an unusual temperature behavior of the anomaly as well as its recently discovered feature: oscillatory modulation as a function of the channel length and electrostatic potential. A recipe for experimental verification of the model is given.展开更多
Comprehensive Summary Deoxyribonucleic acid(DNA)is a biomacromolecule,as well as a polymeric material,whose sequences with different manipulative structures enable them to implement a series of functions,such as reorg...Comprehensive Summary Deoxyribonucleic acid(DNA)is a biomacromolecule,as well as a polymeric material,whose sequences with different manipulative structures enable them to implement a series of functions,such as reorganization,target,and catalysis.Compared to existing traditional materials incapable of multifunctional integration,the polymeric DNA network is a form of material that can achieve functional integration while maintaining specific DNA properties.Furthermore,precise target enabled by DNA network is one of the most essential components of cellular manipulation.Hence,the DNA network is indispensable and irreplaceable to cell manipulation that it is a versatile tool for the understanding of basic laws of living life and treatments of diseases,such as cell isolation,cell delivery,and cell interference.Herein,the construction of polymeric DNA network is briefly introduced from the aspects of assembly modules,construction methods,and properties.展开更多
In this paper, we have presented and established a new theoretical formulation of photon optics based on photon path and Feynman path integral idea. We have used Feynman path integral ap- proach to discuss Fraunhofer,...In this paper, we have presented and established a new theoretical formulation of photon optics based on photon path and Feynman path integral idea. We have used Feynman path integral ap- proach to discuss Fraunhofer, Fresnel diffraction of single photon and entangled photon pairs by ultrasonic wave and obtained the following results: i) quantum state and probability distribution of single photon and entangled photon pairs by Fraunhofer and Fresnel ultrasonic diffraction, ii) oblique incidence Raman-Nath and Bragg diffraction conditions, iii) total correlation state and its probability distribution. Our calculation results are in agreement with the experiment results. Comparing one-photon and two-photon diffraction effects by ultrasonic waves, we have found that two-photon diffraction by ultrasonic waves is also a sub-wavelength diffraction.展开更多
基金supported in part by the National Natural Science Foundation of China (No.62271253,61901523,62001381)Fundamental Research Funds for the Central Universities (No.NS2023018)+2 种基金the National Aerospace Science Foundation of China under Grant 2023Z021052002the open research fund of National Mobile Communications Research Laboratory,Southeast University (No.2023D09)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20220402)。
文摘To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.
基金National Natural Science Foundation of China(11474114,11874166,11974119)Guangdong Province Introduction of Innovative RD Team(2016ZT06C594)Thousand-Young-Talent Program of China。
文摘Classical wisdom of wave-particle duality regulates that a quantum object shows either the particle or wave nature but never both.Consequently,it would be impossible to observe simultaneously the complete wave and particle nature of the quantum object.Mathematically the principle requests that the interference visibility V and whichpath distinguishability D satisfy an orthodox limit of V^2+D^2≤1.The present work reports a new waveparticle duality test experiment using single photons in a modified Mach-Zehnder interferometer to demonstrate the possibility of breaking the limit.The key element of the interferometer is a weakly scattering total internal reflection prism surface,which exhibits a pronounced single-photon interference with a visibility of up to 0.97and simultaneously provides a path distinguishability of 0.83.Apparently,the result of V^2+D^2≈1.63 exceeds the orthodox limit set by the classical principle of wave-particle duality for single photons.We expect that more delicate experiments in the future should be able to demonstrate the ultimate limit of V^2+D^2≈2 and shed new light on the foundations of con temporary quantum mechanics.
文摘Using the modal dispersion equation with the phase-integral approaches, and con-sidering an eddy (or water mass) as a sound channel disturbance, the effects of the undisturbed channel, cold-core eddy and warm-core eddy on the acoustic propagation characteristics are dis-cussed. According to the solutions of the dispersion equation, the relation between the modal Parameters (phase velocity, group velocity and interference distance) and the eddy intensity is obtained. When the plane wave (with an incident angle a) travels toward the center of a warm-core eddy (disturbed intensity BM ) 'double channel phenomenon' will take place in case of sin2 α < BM < 2(1 - cosα), and then the modal phase velocity and interference distance will have anomalous changes which are completely different from the case of the cold-core eddy.
文摘To mitigate the deleterious effects of clutter and jammer, modern radars have adopted adaptive processing techniques such as constant false alarm rate(CFAR) detectors which are widely used to prevent clutter and noise interference from saturating the radar’s display and preventing targets from being obscured.This paper concerns with the detection analysis of the novel version of CFAR schemes(cell-averaging generalized trimmed-mean,CATM) in the presence of additional outlying targets other than the target under research. The spurious targets as well as the tested one are assumed to be fluctuating in accordance with the χ~2-model with two-degrees of freedom. In this situation, the processor performance is enclosed by the swerling models(SWI and SWII). Between these bounds, there is an important class of target fluctuation which is known as moderately fluctuating targets. The detection of this class has many practical applications. Structure of the CATM detector is described briefly. Detection performances for optimal, CAM, CA, trimmed-mean(TM) and ordered-statistic(OS) CFAR strategies have been analyzed and compared for desired probability of false alarm and determined size of the reference window. False alarm rate performance of these processors has been evaluated for different strengths of interfering signal and the effect of correlation among the target returns on the detection and false alarm performances has also been studied. Our numerical results show that, with a proper choice of trimming parameters,the novel model CAM presents an ideal detection performance outweighing that of the Neyman-Pearson detector on condition that the tested target obeys the SWII model in its fluctuation. Although the new models CAS and CAM can be treated as special cases of the CATM algorithm, their multi-target performance is modest even it has an enhancement relative to that of the classical CAcheme. Additionally, they fail to maintain the false alarm rate constant when the operating environment is of type target multiplicity. Moreover, the non-coherent integration of M pulses ameliorates the processor performance either it operates in homogeneous or multi-target environment.
文摘Apart from usual quantization steps on the ballistic conductance of quasi-one-dimensional conductor, an additional plateau-like feature appears at a fraction of about 0.7 below the first conductance step in GaAs-based quantum point contacts (QPCs). Despite a tremendous amount of research on this anomalous feature, its origin remains still unclear. Here, a unique model of this anomaly is proposed relying on fundamental principles of quantum mechanics. It is noticed that just after opening a quasi-1D conducting channel in the QPC a single electron travels the channel at a time, and such electron can be—in principle—observed. The act of observation destroys superposition of spin states, in which the electron otherwise exists, and this suppresses their quantum interference. It is shown that then the QPC-conductance is reduced by a factor of 0.74. “Visibility” of electron is enhanced if the electron spends some time in the channel due to resonant transmission. Electron’s resonance can also explain an unusual temperature behavior of the anomaly as well as its recently discovered feature: oscillatory modulation as a function of the channel length and electrostatic potential. A recipe for experimental verification of the model is given.
基金the National Natural Science Foundation of China(grant nos.22225505 and 22174097).
文摘Comprehensive Summary Deoxyribonucleic acid(DNA)is a biomacromolecule,as well as a polymeric material,whose sequences with different manipulative structures enable them to implement a series of functions,such as reorganization,target,and catalysis.Compared to existing traditional materials incapable of multifunctional integration,the polymeric DNA network is a form of material that can achieve functional integration while maintaining specific DNA properties.Furthermore,precise target enabled by DNA network is one of the most essential components of cellular manipulation.Hence,the DNA network is indispensable and irreplaceable to cell manipulation that it is a versatile tool for the understanding of basic laws of living life and treatments of diseases,such as cell isolation,cell delivery,and cell interference.Herein,the construction of polymeric DNA network is briefly introduced from the aspects of assembly modules,construction methods,and properties.
文摘In this paper, we have presented and established a new theoretical formulation of photon optics based on photon path and Feynman path integral idea. We have used Feynman path integral ap- proach to discuss Fraunhofer, Fresnel diffraction of single photon and entangled photon pairs by ultrasonic wave and obtained the following results: i) quantum state and probability distribution of single photon and entangled photon pairs by Fraunhofer and Fresnel ultrasonic diffraction, ii) oblique incidence Raman-Nath and Bragg diffraction conditions, iii) total correlation state and its probability distribution. Our calculation results are in agreement with the experiment results. Comparing one-photon and two-photon diffraction effects by ultrasonic waves, we have found that two-photon diffraction by ultrasonic waves is also a sub-wavelength diffraction.