The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ...The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.展开更多
While cellular networks have continuously evolved in re- cent years, the industry has clearly seen unprecedented chal- lenges to meet the exponentially growing expectations in the near future. The 5G system is facing ...While cellular networks have continuously evolved in re- cent years, the industry has clearly seen unprecedented chal- lenges to meet the exponentially growing expectations in the near future. The 5G system is facing grand challenges such as the ever-increasing traffic volumes and remarkably diver- sified services connecting humans and machines alike. As a result, the future network has to deliver massively increased capacity, greater flexibility, incorporated computing capabili- ty, support of significantly extended battery lifetime, and ac- commodation of varying payloads with fast setup and low latency, etc. In particular, as 5G requires more spectrum resource, higher frequency bands are desirable. Nowadays, millimeter wave has been widely accepted as one of the main communication bands for 5G.展开更多
While cellular networks have continuously evolved in recent years, the industry has clearly seen unprecedented challenges to meet the exponentially growing expectations in the near future.
This book records a collection of 42 selected papers presented at UK-China Particle Technology Forum Ⅲ held at Birmingham, UI〈, on 2011-7-3/6. The prior Forum Ⅱ was held in Guiyang, China in 2009, and Forum Ⅰ in L...This book records a collection of 42 selected papers presented at UK-China Particle Technology Forum Ⅲ held at Birmingham, UI〈, on 2011-7-3/6. The prior Forum Ⅱ was held in Guiyang, China in 2009, and Forum Ⅰ in Leeds, UK in 2007. This Forum Ⅲ was classified in this book into four topics totaling 42 presentations, each represented in this review by the first two papers, as follows:展开更多
In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rend...In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rendering graphics function, which is widely used to design industrial products. In this paper, through decomposition and modeling, modeling and drawing methods were analyzed in various parts of footwear by Rhino, as well as the smooth technology and adjustments to its profile curve by an example of lady's high boots. Finally, through a series introductions of rendering effects for footwear in color, light perception, grain characteristic, and 3D graphics, the main technical essential is achieved and difficulties in design of overall footwear styles are solved.展开更多
1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In ...1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In most cases,exploration of new and alternative battery materials starts from known literature and follows time-consuming trial-and-error experimental展开更多
1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In ...1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In most cases,exploration of new and alternative battery materials starts from known literature and follows time-consuming trial-and-error experimental or modeling approaches.The Materials Genome Initiative was展开更多
According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important exis...According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important existing scientific concept or leading to the creation of a new paradigm or field of science is also characterized by its challenge to current understanding or its pathway to new frontiers.' Nanotechnology is one of such frontiers. It is the creation of new materials, devices and systems at the molecular level--phenomena associated with atomic and molecular interactions strongly influence macroscopic material properties with significantly improved mechanical, optical, chemical, electrical... properties. Former NSF Director Rita Colwell in 2002 declared, ‘nanoscale technology will have an impact equal to the Industrial Revolution'. The transcendent technologies include nanotechnology, microelectronics, information technology and biotechnology as well as the enabling and supporting mechanical and civil infrastructure systems and materials. These technologies are the primary drivers of the twenty first century and the new economy. Mechanics is an essential eleraent in all of the transcendent technologies. Research opportunities, education and challenges in mechanics, including experimental, numerical and analytical methods in nanomechanics, carbon nano-tubes, bio-inspired materials, fuel cells, as well as improved engineering and design of materials are presented and discussed in this paper.展开更多
In this review,a brief presentation is first given to the hierarchical structure and mechanical behavior of bone.Then,the recent advancements in nanoscale characterization of bone ultrastructure and ingredients are di...In this review,a brief presentation is first given to the hierarchical structure and mechanical behavior of bone.Then,the recent advancements in nanoscale characterization of bone ultrastructure and ingredients are discussed based on an extensive quantity of references in the literature.Moreover,computational and analytical bone mechanics at ultrastructure levels are critically reviewed with the growing body of knowledge in the field.The computational and analytical models are summarized in several categories for ease of understanding bone nanomechanics and their applicability/limitations.This review is expected to provide a well-informed foundation for the researchers interested in interrogating the complex biomechanical response of bone at its nanoscale hierarchy.展开更多
Molecular dynamics has been widely used to study the fundamental mechanism of Ni-based superalloys.However,the effect of the potential function and strain rate on mechanical behavior has rarely been mentioned in the p...Molecular dynamics has been widely used to study the fundamental mechanism of Ni-based superalloys.However,the effect of the potential function and strain rate on mechanical behavior has rarely been mentioned in the previous molecular dynamics studies.In the present work,we show that the potential function of molecular dynamics can dramatically influence the simulation results of single crystal Ni-based superalloys.The microstructure and mechanical behavior of single crystal Ni-based superalloys under four commonly used potential functions are systematically compared.A most suitable potential function for the mechanical deformation is critically selected,and based on it,the role of strain rate on the mechanical deformation is investigated.展开更多
Polychlorinated dibenzothiophenes(PCDTs) are a group of important persistent organic pollutants.In the present study,geometrical optimization and electrostatic potential calculations have been performed for all 135 ...Polychlorinated dibenzothiophenes(PCDTs) are a group of important persistent organic pollutants.In the present study,geometrical optimization and electrostatic potential calculations have been performed for all 135 PCDTs congeners at the B3LYP/6-31G* level of theory.By means of the VSMP(variable selection and modeling based on prediction) program,one optimal descriptor(molecular polarizability,α) was selected to develop a QSRR model for the prediction of gas chromatographic retention indices(GC-RI) of PCDTs.The estimated correlation coefficients(r2) and LOO-validated correlation coefficients(q2),all more than 0.99,were built by multiple linear regression,which shows a good estimation ability and stability of the models.A prediction power for the external samples was validated by the model built from the training set with 17 polychlorinated dibenzothiophenes.展开更多
Digital twin(DT)can achieve real-time information fusion and interactive feedback between virtual space and physical space.This technology involves a digital model,real-time information management,comprehensive intell...Digital twin(DT)can achieve real-time information fusion and interactive feedback between virtual space and physical space.This technology involves a digital model,real-time information management,comprehensive intelligent perception networks,etc.,and it can drive the rapid conceptual development of intelligent construction(IC)such as smart factories,smart cities,and smart medical care.Nevertheless,the actual use of DT in IC is partially pending,with numerous scientific factors still not clarified.An overall survey on pending issues and unsolved scientific factors is needed for the development of DT-driven IC.To this end,this study aims to provide a comprehensive review of the state of the art and state of the use of DT-driven IC.The use of DT in planning,design,manufacturing,operation,and maintenance management of IC is demonstrated and analyzed,following which the driving functions of DT in IC are detailed from four aspects:information perception and analysis,data mining and modeling,state assessment and prediction,intelligent optimization and decision-making.Furthermore,the future direction of research,using DT in IC,is presented with some comments and suggestions.This work will help researchers gain in-depth and systematic understanding of the use of DT,and help practitioners to better promote its implementation in IC.展开更多
This paper argues for an overt innovational shift in praxis, as well as classroom configuration in the ESOL writing class by calling for a move away from the current foci on process-based pedagogies for newcomer popul...This paper argues for an overt innovational shift in praxis, as well as classroom configuration in the ESOL writing class by calling for a move away from the current foci on process-based pedagogies for newcomer populations, to an explicit teaching of modeling strategies with concomitant practice opportunities provided in the ESOL writing class. It is argued that explicit, sequenced instruction in the domains of rhetorical structure as well as grammatical accuracy provide ESOL (English for Speakers of Other Languages) learners in the emerging stages of language learning with a more concrete grasp of meaning, structure and grammar in rhetorical construction. The modeling strategies proposed in the paper focus on a simultaneous building of rhetorical fluency and grammatical accuracy via spotlighted and sequenced strategies which afford learners practice in smaller chunks of composition including but not limited to thesis statement writing, varied paragraph organization, multiple modes of exposition, and grammatical complexity all in a bid to generate rhetorical depth and grammatical detail in writing. In short, both form and function need to be explicitly taught in the ESOL writing class with adequate opportunities provided for rhetorical practice. Using a meticulous blend of meaningful, authentic and purposeful tasks combined with one-on-one instruction which incorporates a variety of visual and rhetorical modeling strategies, emerging writers, it is argued a move from controlled to automatic writing fluency within a short time span. The pedagogy proposed in the current paper spotlights the specific learner, rather than the writing process and entails a move away from traditional, teacher-fronted classrooms to targeted, workshop-centered configurations which permit for one-on-one conferencing in the ESOL writing class. The visually rendered modeling strategies proposed in this paper argue for writing instruction for ESOL students which is learner responsive, relevant and practical.展开更多
The article deals with the methodology of pseudorandom data analysis. As a mathematical tool for carrying out the research the extreme value theory was used that creates one of the directions in mathematical statistic...The article deals with the methodology of pseudorandom data analysis. As a mathematical tool for carrying out the research the extreme value theory was used that creates one of the directions in mathematical statistics, and is related to investigating the extreme deviations from the median values in probability distributions. Also, the methods for estimating unknown parameters and algorithm of random-number generation are discussed. The models of treatment the extreme values are constructed which are based on machine generated sample and approach is proposed for their future application for constructing forecasting models.展开更多
With the support of edge computing,the synergy and collaboration among central cloud,edge cloud,and terminal devices form an integrated computing ecosystem known as the cloud-edge-client architecture.This integration ...With the support of edge computing,the synergy and collaboration among central cloud,edge cloud,and terminal devices form an integrated computing ecosystem known as the cloud-edge-client architecture.This integration unlocks the value of data and computational power,presenting significant opportunities for large-scale 3D scene modeling and XR presentation.In this paper,we explore the perspectives and highlight new challenges in 3D scene modeling and XR presentation based on point cloud within the cloud-edge-client integrated architecture.We also propose a novel cloud-edge-client integrated technology framework and a demonstration of municipal governance application to address these challenges.展开更多
A new modulated structure consisting of periodic (1120) stacking faults (SFs) in the α-Fe2O3 nanowires (NWs) formed by the thermal oxidation of Fe foils is reported, using a combination of high-resolution trans...A new modulated structure consisting of periodic (1120) stacking faults (SFs) in the α-Fe2O3 nanowires (NWs) formed by the thermal oxidation of Fe foils is reported, using a combination of high-resolution transmission electron microscopy (HRTEM) observations and HRTEM image simulations. The periodicity of the modulated structure is 1.53 nm, which is ten times (3500) interplanar spacing and can be described by a shift of every ten (3500) planes with 1/2 the interplanar spacing of the (1120) plane. An atomic model for the Fe203 structure is proposed to simulate the modulated structure. HRTEM simulation results confirm that the modulated structure in α-Fe2O3 NWs is caused by SFs.展开更多
Traffic simulation models have the potential to provide an objective, cost-effective and flexible approach to assessing system design, traffic operations and management strategies. In that regard, the calibration and ...Traffic simulation models have the potential to provide an objective, cost-effective and flexible approach to assessing system design, traffic operations and management strategies. In that regard, the calibration and validation of simulation model is crucial for appropriate decision making process. This paper presents an application of microscopic simulation model calibration and validation procedure for a multimodal urban traffic network. Model is developed by VISSIM and VISSIG software tools.展开更多
Constructing Bernstein-Bezier triangular interpolating curve surface interpolating a series of arbitrary disordered data points is of considerable importance for the design and modeling of surfaces with a variety of c...Constructing Bernstein-Bezier triangular interpolating curve surface interpolating a series of arbitrary disordered data points is of considerable importance for the design and modeling of surfaces with a variety of continuity information. In this article. a kind of simple and reliable algorithm that can process complex field triangular grid generating is presented, and a group of formulae for determining triangular curved surface with wholly C1 continuity are given. It can process arbitrary non-convex boundary and can be used to construct surfaces inner holes.展开更多
Defect formation is a critical challenge for powder-based metal additive manufacturing(AM).Current understanding on the three important issues including formation mechanism,influence and control method of metal AM def...Defect formation is a critical challenge for powder-based metal additive manufacturing(AM).Current understanding on the three important issues including formation mechanism,influence and control method of metal AM defects should be updated.In this review paper,multi-scale defects in AMed metals and alloys are identified and for the first time classified into three categories,including geometry related,surface integrity related and microstructural defects.In particular,the microstructural defects are further divided into internal cracks and pores,textured columnar grains,compositional defects and dislocation cells.The root causes of the multi-scale defects are discussed.The key factors that affect the defect formation are identified and analyzed.The detection methods and modeling of the multi-scale defects are briefly introduced.The effects of the multi-scale defects on the mechanical properties especially for tensile properties and fatigue performance of AMed metallic components are reviewed.Various control and mitigation methods for the corresponding defects,include process parameter control,post processing,alloy design and hybrid AM techniques,are summarized and discussed.From research aspect,current research gaps and future prospects from three important aspects of the multi-scale AM defects are identified and delineated.展开更多
Atmospheric oxidizing capacity(AOC)is an essential driving force of troposphere chemistry and self-cleaning,but the definition of AOC and its quantitative representation remain uncertain.Driven by national demand for ...Atmospheric oxidizing capacity(AOC)is an essential driving force of troposphere chemistry and self-cleaning,but the definition of AOC and its quantitative representation remain uncertain.Driven by national demand for air pollution control in recent years,Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research.This paper will give a brief review of these developments.First,AOC indexes were established that represent apparent atmospheric oxidizing ability(AOIe)and potential atmospheric oxidizing ability(AOIp)based on aspects of macrothermodynamics and microdynamics,respectively.A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing,and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country.In addition,the detection of ground or vertical profiles for atmospheric OH·,HO_(2)·,NO_(3)·radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments.Moreover,laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O_(3)and NO_(2),which are typical oxidants in the surface/interface atmosphere,and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies,multiphase and multi-interface conditions were obtained.Finally,based on the GRAPES-CUACE adjoint model improved by Chinese scholars,simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized.Normalized numerical simulations of AOIe and AOIp were performed,and regional coordination of AOC was adjusted.An optimized plan for controlling O_(3)and PM2.5was analyzed by scenario simulation.展开更多
文摘The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.
文摘While cellular networks have continuously evolved in re- cent years, the industry has clearly seen unprecedented chal- lenges to meet the exponentially growing expectations in the near future. The 5G system is facing grand challenges such as the ever-increasing traffic volumes and remarkably diver- sified services connecting humans and machines alike. As a result, the future network has to deliver massively increased capacity, greater flexibility, incorporated computing capabili- ty, support of significantly extended battery lifetime, and ac- commodation of varying payloads with fast setup and low latency, etc. In particular, as 5G requires more spectrum resource, higher frequency bands are desirable. Nowadays, millimeter wave has been widely accepted as one of the main communication bands for 5G.
文摘While cellular networks have continuously evolved in recent years, the industry has clearly seen unprecedented challenges to meet the exponentially growing expectations in the near future.
文摘This book records a collection of 42 selected papers presented at UK-China Particle Technology Forum Ⅲ held at Birmingham, UI〈, on 2011-7-3/6. The prior Forum Ⅱ was held in Guiyang, China in 2009, and Forum Ⅰ in Leeds, UK in 2007. This Forum Ⅲ was classified in this book into four topics totaling 42 presentations, each represented in this review by the first two papers, as follows:
文摘In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rendering graphics function, which is widely used to design industrial products. In this paper, through decomposition and modeling, modeling and drawing methods were analyzed in various parts of footwear by Rhino, as well as the smooth technology and adjustments to its profile curve by an example of lady's high boots. Finally, through a series introductions of rendering effects for footwear in color, light perception, grain characteristic, and 3D graphics, the main technical essential is achieved and difficulties in design of overall footwear styles are solved.
文摘1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In most cases,exploration of new and alternative battery materials starts from known literature and follows time-consuming trial-and-error experimental
文摘1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In most cases,exploration of new and alternative battery materials starts from known literature and follows time-consuming trial-and-error experimental or modeling approaches.The Materials Genome Initiative was
文摘According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important existing scientific concept or leading to the creation of a new paradigm or field of science is also characterized by its challenge to current understanding or its pathway to new frontiers.' Nanotechnology is one of such frontiers. It is the creation of new materials, devices and systems at the molecular level--phenomena associated with atomic and molecular interactions strongly influence macroscopic material properties with significantly improved mechanical, optical, chemical, electrical... properties. Former NSF Director Rita Colwell in 2002 declared, ‘nanoscale technology will have an impact equal to the Industrial Revolution'. The transcendent technologies include nanotechnology, microelectronics, information technology and biotechnology as well as the enabling and supporting mechanical and civil infrastructure systems and materials. These technologies are the primary drivers of the twenty first century and the new economy. Mechanics is an essential eleraent in all of the transcendent technologies. Research opportunities, education and challenges in mechanics, including experimental, numerical and analytical methods in nanomechanics, carbon nano-tubes, bio-inspired materials, fuel cells, as well as improved engineering and design of materials are presented and discussed in this paper.
基金Some work reported in this publication was partially supported by grants from the National Science Foundation(CMMI-1538448,CMMI-1266390)National Institutes of Health(AG027780 and AR055955),Office of the Vice President for Research of the University of Texas at San Antonio.
文摘In this review,a brief presentation is first given to the hierarchical structure and mechanical behavior of bone.Then,the recent advancements in nanoscale characterization of bone ultrastructure and ingredients are discussed based on an extensive quantity of references in the literature.Moreover,computational and analytical bone mechanics at ultrastructure levels are critically reviewed with the growing body of knowledge in the field.The computational and analytical models are summarized in several categories for ease of understanding bone nanomechanics and their applicability/limitations.This review is expected to provide a well-informed foundation for the researchers interested in interrogating the complex biomechanical response of bone at its nanoscale hierarchy.
基金Project supported by National Science and Technology Major Project of China(Grant No.2017-IV-0003-0040)Fundamental Research Funds for the Central Universities in NWPU,China(Grant No.31020180QD088)+2 种基金the National Natural Science Foundation of China(Grant Nos.12002275 and 51904015)the Natural Science Foundation of Shaanxi Province,China(Grant No.2020JQ-125)General Program of Science and Technology Development Project of Beijing Municipal Education Commission,China(Grant No.KM202010005008).
文摘Molecular dynamics has been widely used to study the fundamental mechanism of Ni-based superalloys.However,the effect of the potential function and strain rate on mechanical behavior has rarely been mentioned in the previous molecular dynamics studies.In the present work,we show that the potential function of molecular dynamics can dramatically influence the simulation results of single crystal Ni-based superalloys.The microstructure and mechanical behavior of single crystal Ni-based superalloys under four commonly used potential functions are systematically compared.A most suitable potential function for the mechanical deformation is critically selected,and based on it,the role of strain rate on the mechanical deformation is investigated.
基金Sponsored by the NSF of Guangxi Province (No. 2011XNSFA018059)Guangxi Key Laboratory Research Fund of Environmental Engineering and Protection Assessment (No. 0801Z026)+1 种基金Major Science of Water Pollution Control and Management (No. 2008ZX07317-02)the Guangxi Zhuang Autonomous Region Department of Education Research (No. 201010LX174) Funding
文摘Polychlorinated dibenzothiophenes(PCDTs) are a group of important persistent organic pollutants.In the present study,geometrical optimization and electrostatic potential calculations have been performed for all 135 PCDTs congeners at the B3LYP/6-31G* level of theory.By means of the VSMP(variable selection and modeling based on prediction) program,one optimal descriptor(molecular polarizability,α) was selected to develop a QSRR model for the prediction of gas chromatographic retention indices(GC-RI) of PCDTs.The estimated correlation coefficients(r2) and LOO-validated correlation coefficients(q2),all more than 0.99,were built by multiple linear regression,which shows a good estimation ability and stability of the models.A prediction power for the external samples was validated by the model built from the training set with 17 polychlorinated dibenzothiophenes.
基金the financial support partially provided by The Quality Engineering Project of Anhui Province(2019sjjd58,2020sxzx36)The Ministry of Education Cooperative Education Project(201901119016)+1 种基金The Chinese(Jiangsu)-Czech Bilateral Co-funding R&D Project(SBZ2018000220)the Key R&D Project of Anhui Science and Technology Department(202004b11020026).
文摘Digital twin(DT)can achieve real-time information fusion and interactive feedback between virtual space and physical space.This technology involves a digital model,real-time information management,comprehensive intelligent perception networks,etc.,and it can drive the rapid conceptual development of intelligent construction(IC)such as smart factories,smart cities,and smart medical care.Nevertheless,the actual use of DT in IC is partially pending,with numerous scientific factors still not clarified.An overall survey on pending issues and unsolved scientific factors is needed for the development of DT-driven IC.To this end,this study aims to provide a comprehensive review of the state of the art and state of the use of DT-driven IC.The use of DT in planning,design,manufacturing,operation,and maintenance management of IC is demonstrated and analyzed,following which the driving functions of DT in IC are detailed from four aspects:information perception and analysis,data mining and modeling,state assessment and prediction,intelligent optimization and decision-making.Furthermore,the future direction of research,using DT in IC,is presented with some comments and suggestions.This work will help researchers gain in-depth and systematic understanding of the use of DT,and help practitioners to better promote its implementation in IC.
文摘This paper argues for an overt innovational shift in praxis, as well as classroom configuration in the ESOL writing class by calling for a move away from the current foci on process-based pedagogies for newcomer populations, to an explicit teaching of modeling strategies with concomitant practice opportunities provided in the ESOL writing class. It is argued that explicit, sequenced instruction in the domains of rhetorical structure as well as grammatical accuracy provide ESOL (English for Speakers of Other Languages) learners in the emerging stages of language learning with a more concrete grasp of meaning, structure and grammar in rhetorical construction. The modeling strategies proposed in the paper focus on a simultaneous building of rhetorical fluency and grammatical accuracy via spotlighted and sequenced strategies which afford learners practice in smaller chunks of composition including but not limited to thesis statement writing, varied paragraph organization, multiple modes of exposition, and grammatical complexity all in a bid to generate rhetorical depth and grammatical detail in writing. In short, both form and function need to be explicitly taught in the ESOL writing class with adequate opportunities provided for rhetorical practice. Using a meticulous blend of meaningful, authentic and purposeful tasks combined with one-on-one instruction which incorporates a variety of visual and rhetorical modeling strategies, emerging writers, it is argued a move from controlled to automatic writing fluency within a short time span. The pedagogy proposed in the current paper spotlights the specific learner, rather than the writing process and entails a move away from traditional, teacher-fronted classrooms to targeted, workshop-centered configurations which permit for one-on-one conferencing in the ESOL writing class. The visually rendered modeling strategies proposed in this paper argue for writing instruction for ESOL students which is learner responsive, relevant and practical.
文摘The article deals with the methodology of pseudorandom data analysis. As a mathematical tool for carrying out the research the extreme value theory was used that creates one of the directions in mathematical statistics, and is related to investigating the extreme deviations from the median values in probability distributions. Also, the methods for estimating unknown parameters and algorithm of random-number generation are discussed. The models of treatment the extreme values are constructed which are based on machine generated sample and approach is proposed for their future application for constructing forecasting models.
基金the National Natural Science Foundation of China(U22B2034)the Fundamental Research Funds for the Central Universities(226-2022-00064).
文摘With the support of edge computing,the synergy and collaboration among central cloud,edge cloud,and terminal devices form an integrated computing ecosystem known as the cloud-edge-client architecture.This integration unlocks the value of data and computational power,presenting significant opportunities for large-scale 3D scene modeling and XR presentation.In this paper,we explore the perspectives and highlight new challenges in 3D scene modeling and XR presentation based on point cloud within the cloud-edge-client integrated architecture.We also propose a novel cloud-edge-client integrated technology framework and a demonstration of municipal governance application to address these challenges.
基金Project supported by the National Key Basic Research Development Program of China (Grant No.2012CB722705)the Natural Science Foundation for Outstanding Young Scientists in Shandong Province,China (Grant No.JQ201002)+2 种基金the Program for Foreign Cultural and Educational Experts (Grant No.20123702083)the Program for Higher Education Science and Technology in Shandong Province (Grant No.J12LA17)Wang Yi-Qian would like to thank the financial support from Taishan Outstanding Overseas Scholar Program of Shandong Province,China
文摘A new modulated structure consisting of periodic (1120) stacking faults (SFs) in the α-Fe2O3 nanowires (NWs) formed by the thermal oxidation of Fe foils is reported, using a combination of high-resolution transmission electron microscopy (HRTEM) observations and HRTEM image simulations. The periodicity of the modulated structure is 1.53 nm, which is ten times (3500) interplanar spacing and can be described by a shift of every ten (3500) planes with 1/2 the interplanar spacing of the (1120) plane. An atomic model for the Fe203 structure is proposed to simulate the modulated structure. HRTEM simulation results confirm that the modulated structure in α-Fe2O3 NWs is caused by SFs.
文摘Traffic simulation models have the potential to provide an objective, cost-effective and flexible approach to assessing system design, traffic operations and management strategies. In that regard, the calibration and validation of simulation model is crucial for appropriate decision making process. This paper presents an application of microscopic simulation model calibration and validation procedure for a multimodal urban traffic network. Model is developed by VISSIM and VISSIG software tools.
文摘Constructing Bernstein-Bezier triangular interpolating curve surface interpolating a series of arbitrary disordered data points is of considerable importance for the design and modeling of surfaces with a variety of continuity information. In this article. a kind of simple and reliable algorithm that can process complex field triangular grid generating is presented, and a group of formulae for determining triangular curved surface with wholly C1 continuity are given. It can process arbitrary non-convex boundary and can be used to construct surfaces inner holes.
基金the funding support to this research via the projects of ZVMR,BBAT and ZE1W from The Hong Kong Polytechnic Universityproject#RNE-p2–21 of the Shun Hing Institute of Advanced EngineeringThe Chinese University of Hong Kong and the GRF projects(Nos.15223520 and 15228621)。
文摘Defect formation is a critical challenge for powder-based metal additive manufacturing(AM).Current understanding on the three important issues including formation mechanism,influence and control method of metal AM defects should be updated.In this review paper,multi-scale defects in AMed metals and alloys are identified and for the first time classified into three categories,including geometry related,surface integrity related and microstructural defects.In particular,the microstructural defects are further divided into internal cracks and pores,textured columnar grains,compositional defects and dislocation cells.The root causes of the multi-scale defects are discussed.The key factors that affect the defect formation are identified and analyzed.The detection methods and modeling of the multi-scale defects are briefly introduced.The effects of the multi-scale defects on the mechanical properties especially for tensile properties and fatigue performance of AMed metallic components are reviewed.Various control and mitigation methods for the corresponding defects,include process parameter control,post processing,alloy design and hybrid AM techniques,are summarized and discussed.From research aspect,current research gaps and future prospects from three important aspects of the multi-scale AM defects are identified and delineated.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(No.2017YFC0210000)the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(No.CERAE202002)+1 种基金the National Natural Science Foundation of China(No.41705110)Beijing Major Science and Technology Project(No.Z211100004321006)。
文摘Atmospheric oxidizing capacity(AOC)is an essential driving force of troposphere chemistry and self-cleaning,but the definition of AOC and its quantitative representation remain uncertain.Driven by national demand for air pollution control in recent years,Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research.This paper will give a brief review of these developments.First,AOC indexes were established that represent apparent atmospheric oxidizing ability(AOIe)and potential atmospheric oxidizing ability(AOIp)based on aspects of macrothermodynamics and microdynamics,respectively.A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing,and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country.In addition,the detection of ground or vertical profiles for atmospheric OH·,HO_(2)·,NO_(3)·radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments.Moreover,laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O_(3)and NO_(2),which are typical oxidants in the surface/interface atmosphere,and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies,multiphase and multi-interface conditions were obtained.Finally,based on the GRAPES-CUACE adjoint model improved by Chinese scholars,simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized.Normalized numerical simulations of AOIe and AOIp were performed,and regional coordination of AOC was adjusted.An optimized plan for controlling O_(3)and PM2.5was analyzed by scenario simulation.