Polycrystalline samples of Y0.6Gd0.4Ba2-xNbxCu3O7-y(YGBNCO) with different Nb contents (x = 0.05, 0.10, 0.15, 0.20, and 0.25) were prepared using the usual solid state reaction technique. The structure for all samples...Polycrystalline samples of Y0.6Gd0.4Ba2-xNbxCu3O7-y(YGBNCO) with different Nb contents (x = 0.05, 0.10, 0.15, 0.20, and 0.25) were prepared using the usual solid state reaction technique. The structure for all samples was characterized by XRD and SEM. The electrical properties were measured by the FPP method in the temperature range from 70 to 130 K. The lattice constant of b remains almost unchanged and a and c increases with the increase of Nb content with x ≤ 0.10. The zero resistance transition temperature and Jc decrease with increasing Nb content. But superconductivity did not suppress. As the Nb content in the samples increases, it gives a diffused phase indicating a niobium perovskite phase and it is a small amount of unidentified phase.展开更多
Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage curre...Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage current of BST thin films were focused. The dielectric constant of BST thin films increased and then decreased with the increase of HfO 2 thickness, while the dielectric relaxation was gradually improved. The loss tangent and leakage current under positive bias decreased with the HfO 2 thickness increasing. The leakage current analysis based on the Schottky emission indicated an improvement of the BST/Pt interface with HfO 2 buffer layer. The loss tangent, tunability and figure of merit of optimized HfO 2 buffered BST thin film achieved 0.009 8, 21.91% (E max = 200 kV/cm), 22.40 at 10 6 Hz, respectively.展开更多
We investigate the vortex dynamics in two typical hole doped iron based superconductors CaKFe_4As_4(CaK1144) and Ba_(0.6)K_(0.4)Fe_2As_2(BaK122) with similar superconducting transition temperatures. It is found that t...We investigate the vortex dynamics in two typical hole doped iron based superconductors CaKFe_4As_4(CaK1144) and Ba_(0.6)K_(0.4)Fe_2As_2(BaK122) with similar superconducting transition temperatures. It is found that the magnetization hysteresis loop exhibits a clear second peak effect in BaK122 in wide temperature region while it is absent in CaK1144. However, a second peak effect of critical current density versus temperature is observed in CaK1144, which is however absent in BaK122. The different behaviors of second peak effect in BaK122 and CaK1144 may suggest distinct origins of vortex pinning in different systems. Magnetization and its relaxation have also been measured by using dynamical and conventional relaxation methods for both systems. Analysis and comparison of the two distinct systems show that the vortex pinning is stronger and the critical current density is higher in BaK122 system. It is found that the Maley's method can be used and thus the activation energy can be determined in BaK122 by using the time dependent magnetization in wide temperature region, but this is not applicable in CaK1144 system.Finally we present the different regimes with distinct vortex dynamics in the field-temperature diagram for the two systems.展开更多
Polycrystalline YBa2Cu3O7-y (YBCO) and Y0.6Gd0.4Ba2-xNbxCu3O7-y (YGBNCO) compounds with 0≤x≤0.225 were synthesized using standard solid state reaction technique. The structure for all samples was characterized b...Polycrystalline YBa2Cu3O7-y (YBCO) and Y0.6Gd0.4Ba2-xNbxCu3O7-y (YGBNCO) compounds with 0≤x≤0.225 were synthesized using standard solid state reaction technique. The structure for all samples was characterized by X-ray difference (XRD) and scanning electron microscopy (SEM). The transport properties were measured by the (FPP) method in the temperature range from 70 to 130 K. As the Nb content in the samples increased, a diffused phase indicating a niobium perovskite phase and a small amount of unidentified phase appeared. With the increase of Nb content, the superconducting transition temperature Tconset increased slowly with x≤0.125, and then it remained unchanged or slowly decreased with 0.125≤x≤0.225. It could be found that there was a slow decrease of zero-resistance temperature, Tcoffset, with the increase of Nb content. The larger transition width might result from the YBa2NbO6 phase, impurity and unidentified phases of the sample due to the Nb doping.展开更多
The superconducting properties of polycrystalline Sr0.6K0.4Fe2As2 were strongly influenced by Ag doping(Supercond.Sci.Technol.23(2010) 025027).Ag addition is mainly dominated by silver diffusing,so the annealing proce...The superconducting properties of polycrystalline Sr0.6K0.4Fe2As2 were strongly influenced by Ag doping(Supercond.Sci.Technol.23(2010) 025027).Ag addition is mainly dominated by silver diffusing,so the annealing process is one of the essential factors to achieve high quality Ag doped Sr0.6K0.4Fe2As2.In this paper,the optimal annealing conditions were studied for Ag doped Sr0.6K0.4Fe2As2 bulks prepared by a one-step solid reaction method.It is found that the annealing temperature has a strong influence on the superconducting properties,especially on the critical current density Jc.As a result,higher heat treatment temperature(~900℃) is helpful in diffusing Ag and reducing the impurity phase gathered together to improve the grain connectivity.In contrast,low-temperature sintering is counterproductive for Ag doped samples.These results clearly suggest that annealing at ~900℃ is necessary for obtaining high Jc Ag-doped samples.展开更多
Guided by the belief that Fermi energy EF (equivalently, chemical potential μ) plays a pivotal?role in determining the properties of superconductors (SCs), we have recently derived μ-incorporated Generalized-Bardeen...Guided by the belief that Fermi energy EF (equivalently, chemical potential μ) plays a pivotal?role in determining the properties of superconductors (SCs), we have recently derived μ-incorporated Generalized-Bardeen-Cooper-Schrieffer?equations (GBCSEs) for the gaps (Δs) and critical temperatures (Tcs) of both elemental and composite SCs. The μ-dependent interaction parameters consistent with the values of Δs and Tcs of any of these SCs were shown to lead to expressions for the effective mass of electrons (m*) and their number density (ns), critical velocity (v0), and the critical current density j0 at T = 0 in terms of the following five parameters: Debye temperature, EF, a dimensionless construct y, the specific heat constant, and the gram-atomic volume. We could then fix the value of μ in any SC by appealing to the experimental value of its j0 and calculate the other parameters. This approach was followed for a variety of SCs—elemental, MgB2 and cuprates and, with a more accurate equation to determine y, for Nitrogen Nitride (NbN). Employing the framework given for NbN, we present here a detailed study of Ba0.6K0.4Fe2As2 (BaAs). Some of the main attributes of this SC are: it is characterized by?-wave superconductivity and multiple gaps between 0?-?12 meV;its Tc ~?37 K, but the maximum Tc of SCs in its class can exceed 50 K;EF/kTc = 4.4 (k = Boltzmann constant), and its Tc plotted against a tuning variable has a dome-like structure. After drawing attention to the fact that the?-wave is an inbuilt feature of GBCSEs, we give a quantitative account of its several other features, which include the values of m*, ns, vo, and?coherence length. Finally, we also deal with the issue of the stage BaAs occupies in the BCS-Bose-Einstein Condensation crossover.展开更多
In unconventional superconductors, it is generally believed that understanding the physical properties of the normal state is a pre-requisite for understanding the superconductivity mechanism. In conventional supercon...In unconventional superconductors, it is generally believed that understanding the physical properties of the normal state is a pre-requisite for understanding the superconductivity mechanism. In conventional superconductors like niobium or lead, the normal state is a Fermi liquid with a well-defined Fermi surface and well-defined quasipartcles along the Fermi surface. Superconductivity is realized in this case by the Fermi surface instability in the superconducting state and the formation and condensation of the electron pairs(Cooper pairing). The high temperature cuprate superconductors, on the other hand, represent another extreme case that superconductivity can be realized in the underdoped region where there is neither well-defined Fermi surface due to the pseudogap formation nor quasiparticles near the antinodal regions in the normal state. Here we report a novel scenario that superconductivity is realized in a system with well-defined Fermi surface but without quasiparticles along the Fermi surface in the normal state.High resolution laser-based angle-resolved photoemission measurements have been performed on an optimally-doped iron-based superconductor(Ba_(0.6)K_(0.4))Fe_2As_2. We find that, while sharp superconducting coherence peaks emerge in the superconducting state on the hole-like Fermi surface sheets, no quasiparticle peak is present in the normal state. Its electronic behaviours deviate strongly from a Fermi liquid system. The superconducting gap of such a system exhibits an unusual temperature dependence that it is nearly a constant in the superconducting state and abruptly closes at Tc. These observations have provided a new platform to study unconventional superconductivity in a non-Fermi liquid system.展开更多
文摘Polycrystalline samples of Y0.6Gd0.4Ba2-xNbxCu3O7-y(YGBNCO) with different Nb contents (x = 0.05, 0.10, 0.15, 0.20, and 0.25) were prepared using the usual solid state reaction technique. The structure for all samples was characterized by XRD and SEM. The electrical properties were measured by the FPP method in the temperature range from 70 to 130 K. The lattice constant of b remains almost unchanged and a and c increases with the increase of Nb content with x ≤ 0.10. The zero resistance transition temperature and Jc decrease with increasing Nb content. But superconductivity did not suppress. As the Nb content in the samples increases, it gives a diffused phase indicating a niobium perovskite phase and it is a small amount of unidentified phase.
基金Project supported by the Foundation of the Education Commission of Shanghai Municipality (Grant Nos.07ZZ14, 08SG41)the National Natural Science Foundation of China (Grant No.50711130241)the Shanghai Rising Star Program (GrantNo.08QH14008)
文摘Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage current of BST thin films were focused. The dielectric constant of BST thin films increased and then decreased with the increase of HfO 2 thickness, while the dielectric relaxation was gradually improved. The loss tangent and leakage current under positive bias decreased with the HfO 2 thickness increasing. The leakage current analysis based on the Schottky emission indicated an improvement of the BST/Pt interface with HfO 2 buffer layer. The loss tangent, tunability and figure of merit of optimized HfO 2 buffered BST thin film achieved 0.009 8, 21.91% (E max = 200 kV/cm), 22.40 at 10 6 Hz, respectively.
基金supported by the National Key Research and Development Program of China(2016YFA0300401)the National Natural Science Foundation of China(A0402/11534005)
文摘We investigate the vortex dynamics in two typical hole doped iron based superconductors CaKFe_4As_4(CaK1144) and Ba_(0.6)K_(0.4)Fe_2As_2(BaK122) with similar superconducting transition temperatures. It is found that the magnetization hysteresis loop exhibits a clear second peak effect in BaK122 in wide temperature region while it is absent in CaK1144. However, a second peak effect of critical current density versus temperature is observed in CaK1144, which is however absent in BaK122. The different behaviors of second peak effect in BaK122 and CaK1144 may suggest distinct origins of vortex pinning in different systems. Magnetization and its relaxation have also been measured by using dynamical and conventional relaxation methods for both systems. Analysis and comparison of the two distinct systems show that the vortex pinning is stronger and the critical current density is higher in BaK122 system. It is found that the Maley's method can be used and thus the activation energy can be determined in BaK122 by using the time dependent magnetization in wide temperature region, but this is not applicable in CaK1144 system.Finally we present the different regimes with distinct vortex dynamics in the field-temperature diagram for the two systems.
基金Project supported by the Council of the Scientific Research Projects at Konya University
文摘Polycrystalline YBa2Cu3O7-y (YBCO) and Y0.6Gd0.4Ba2-xNbxCu3O7-y (YGBNCO) compounds with 0≤x≤0.225 were synthesized using standard solid state reaction technique. The structure for all samples was characterized by X-ray difference (XRD) and scanning electron microscopy (SEM). The transport properties were measured by the (FPP) method in the temperature range from 70 to 130 K. As the Nb content in the samples increased, a diffused phase indicating a niobium perovskite phase and a small amount of unidentified phase appeared. With the increase of Nb content, the superconducting transition temperature Tconset increased slowly with x≤0.125, and then it remained unchanged or slowly decreased with 0.125≤x≤0.225. It could be found that there was a slow decrease of zero-resistance temperature, Tcoffset, with the increase of Nb content. The larger transition width might result from the YBa2NbO6 phase, impurity and unidentified phases of the sample due to the Nb doping.
基金supported by the Beijing Municipal Science and Technology Commission (Grant No. Z09010300820907)the National Natural Science Foundation of China (Grant No. 50802093)the National Basic Research Program of China (Grant No. 2006CB601004)
文摘The superconducting properties of polycrystalline Sr0.6K0.4Fe2As2 were strongly influenced by Ag doping(Supercond.Sci.Technol.23(2010) 025027).Ag addition is mainly dominated by silver diffusing,so the annealing process is one of the essential factors to achieve high quality Ag doped Sr0.6K0.4Fe2As2.In this paper,the optimal annealing conditions were studied for Ag doped Sr0.6K0.4Fe2As2 bulks prepared by a one-step solid reaction method.It is found that the annealing temperature has a strong influence on the superconducting properties,especially on the critical current density Jc.As a result,higher heat treatment temperature(~900℃) is helpful in diffusing Ag and reducing the impurity phase gathered together to improve the grain connectivity.In contrast,low-temperature sintering is counterproductive for Ag doped samples.These results clearly suggest that annealing at ~900℃ is necessary for obtaining high Jc Ag-doped samples.
文摘Guided by the belief that Fermi energy EF (equivalently, chemical potential μ) plays a pivotal?role in determining the properties of superconductors (SCs), we have recently derived μ-incorporated Generalized-Bardeen-Cooper-Schrieffer?equations (GBCSEs) for the gaps (Δs) and critical temperatures (Tcs) of both elemental and composite SCs. The μ-dependent interaction parameters consistent with the values of Δs and Tcs of any of these SCs were shown to lead to expressions for the effective mass of electrons (m*) and their number density (ns), critical velocity (v0), and the critical current density j0 at T = 0 in terms of the following five parameters: Debye temperature, EF, a dimensionless construct y, the specific heat constant, and the gram-atomic volume. We could then fix the value of μ in any SC by appealing to the experimental value of its j0 and calculate the other parameters. This approach was followed for a variety of SCs—elemental, MgB2 and cuprates and, with a more accurate equation to determine y, for Nitrogen Nitride (NbN). Employing the framework given for NbN, we present here a detailed study of Ba0.6K0.4Fe2As2 (BaAs). Some of the main attributes of this SC are: it is characterized by?-wave superconductivity and multiple gaps between 0?-?12 meV;its Tc ~?37 K, but the maximum Tc of SCs in its class can exceed 50 K;EF/kTc = 4.4 (k = Boltzmann constant), and its Tc plotted against a tuning variable has a dome-like structure. After drawing attention to the fact that the?-wave is an inbuilt feature of GBCSEs, we give a quantitative account of its several other features, which include the values of m*, ns, vo, and?coherence length. Finally, we also deal with the issue of the stage BaAs occupies in the BCS-Bose-Einstein Condensation crossover.
基金supported by the National Key Research and Development Program of China (2016YFA0300300 and 2017YFA0302900)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB07020300 and XDB25000000)+1 种基金the National Basic Research Program of China (2015CB921000), the National Natural Science Foundation of China (11334010)and the Youth Innovation Promotion Association of CAS (2017013)
文摘In unconventional superconductors, it is generally believed that understanding the physical properties of the normal state is a pre-requisite for understanding the superconductivity mechanism. In conventional superconductors like niobium or lead, the normal state is a Fermi liquid with a well-defined Fermi surface and well-defined quasipartcles along the Fermi surface. Superconductivity is realized in this case by the Fermi surface instability in the superconducting state and the formation and condensation of the electron pairs(Cooper pairing). The high temperature cuprate superconductors, on the other hand, represent another extreme case that superconductivity can be realized in the underdoped region where there is neither well-defined Fermi surface due to the pseudogap formation nor quasiparticles near the antinodal regions in the normal state. Here we report a novel scenario that superconductivity is realized in a system with well-defined Fermi surface but without quasiparticles along the Fermi surface in the normal state.High resolution laser-based angle-resolved photoemission measurements have been performed on an optimally-doped iron-based superconductor(Ba_(0.6)K_(0.4))Fe_2As_2. We find that, while sharp superconducting coherence peaks emerge in the superconducting state on the hole-like Fermi surface sheets, no quasiparticle peak is present in the normal state. Its electronic behaviours deviate strongly from a Fermi liquid system. The superconducting gap of such a system exhibits an unusual temperature dependence that it is nearly a constant in the superconducting state and abruptly closes at Tc. These observations have provided a new platform to study unconventional superconductivity in a non-Fermi liquid system.