期刊文献+
共找到135,362篇文章
< 1 2 250 >
每页显示 20 50 100
Influences of the Fresh Air Volume on the Removal of Cough-Released Droplets in a Passenger Car of a High-Speed Train Using CFD
1
作者 Jun Xu Kai Bi +7 位作者 Yibin Lu TiantianWang Hang Zhang Zeyuan Zheng Fushan Shi Yaxin Zheng Xiaoying Li Jingping Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2727-2748,共22页
The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volu... The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volume were studied using computational fluid dynamics(CFD)method.In addition,the structure of indoor flow fields was also analysed.The results show that the large eddies are more stable and flow faster in the air supply under Mode 2(fresh air volume:2200m3/h)compared to Mode 1(fresh air volume:1100m3/h).By analysing the spreading process of droplets sprayed at different locations in the passenger car and with different particle sizes,the removal trends for droplets are found to be similar under the two air supply modes.However,when increasing the fresh air flow volume,the droplets in the middle and front areas of the passenger car are removed faster.When the droplets had dispersed for 60s,Mode 2 exhibited a removal rate approximately 1%–3%higher than Mode 1 for small and medium-sized droplets with diameters of 10 and 50μm.While those in the rear area,the situation is reversed,with Mode 1 slightly surpassing Mode 2 by 1%–3%.For large droplets with a diameter of 100μm,both modes achieved a removal rate of over 96%in all three regions at the 60 s.The results can provide guidance for air supply modes of passenger cars of high-speed trains,thus suppressing the spread of virus-carrying droplets and reducing the risk of viral infection among passengers. 展开更多
关键词 Cough-released pollutants CFD ventilation inside trains supply air volume
下载PDF
Analysis of the Erosion-Corrosion Mechanism of the Air Cooler in a Hydrocracking Unit:A Numerical and Experimental Study
2
作者 Su Guoqing Li Yan +1 位作者 Guo Hongli Zhang Jianwen 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期126-138,共13页
Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirm... Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation. 展开更多
关键词 air cooler hydrocracking unit EROSION-CORROSION SIMULATION visualization experiment multiphase flow
下载PDF
Different bactericidal abilities of plasma-activated saline with various reactive species prepared by surface plasma-activated air and plasma jet combinations
3
作者 贾怡康 李甜会 +5 位作者 张瑞 赵鹏瑜 王子丰 陈旻 郭莉 刘定新 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期50-61,共12页
Plasma-activated water(PAW),as an extended form of cold atmospheric-pressure plasma,greatly expands the application of plasma-based technology.The biological effects of PAW are closely related to the aqueous reactive ... Plasma-activated water(PAW),as an extended form of cold atmospheric-pressure plasma,greatly expands the application of plasma-based technology.The biological effects of PAW are closely related to the aqueous reactive species,which can be regulated by the activation process.In this study,surface plasma-activated air(SAA)and a He+O_(2)plasma jet(Jet)were parallelly combined(the SAA+Jet combination)or sequentially combined(the SAA→Jet combination and the Jet→SAA combination)to prepare plasma-activated saline(PAS).The PAS activated by the combinations exhibited stronger bactericidal effects than that activated by the SAA or the Jet alone.The concentrations of H_(2)O_(2)and NO_(2)^(-)were higher in the PAS activated by the Jet→SAA combination,while ONOO^(-)concentrations were close in the three kinds of PAS and^(1)O_(2)concentrations were higher in the PAS activated by the SAA+Jet combination.The analysis of scavengers also demonstrated that H_(2)O_(2),^(1)O_(2),and ONOO^(-)in the PAS activated by the SAA+Jet combination,and^(1)O_(2)in the PAS activated by the Jet→SAA combination played critical roles in bactericidal effects.Further,the effective placement time of the three PAS varied,and the PAS activated by the Jet→SAA combination could also inactivate 2.6-log_(10)of MRSA cells after placement for more than 60 min.The regulation of reactive species in plasma-activated water via different combinations of plasma devices could improve the directional application of plasma-activated water in the biomedical field. 展开更多
关键词 plasma-activated water surface plasma-activated air plasma jet bactericidal effect reactive species
下载PDF
Efficacy of graphene nanocomposites for air disinfection in dental clinics: A randomized controlled study
4
作者 Ya-Qiong Ju Xiang-Hua Yu +3 位作者 Jing Wu Ying-Hui Hu Xiang-Yong Han Dan Fang 《World Journal of Clinical Cases》 SCIE 2024年第28期6173-6179,共7页
BACKGROUND Aerosols containing disease-causing microorganisms are produced during oral diagnosis and treatment can cause secondary contamination.AIM To investigate the use of graphene material for air disinfection in ... BACKGROUND Aerosols containing disease-causing microorganisms are produced during oral diagnosis and treatment can cause secondary contamination.AIM To investigate the use of graphene material for air disinfection in dental clinics by leveraging its adsorption and antibacterial properties.METHODS Patients who received ultrasonic cleaning at our hospital from April 2023 to April 2024.They were randomly assigned to three groups(n=20 each):Graphene nanocomposite material suction group(Group A),ordinary filter suction group(Group B),and no air suction device group(Group C).The air quality and air colony count in the clinic rooms were assessed before,during,and after the procedure.Additionally,bacterial colony counts were obtained from the air outlets of the suction devices and the filter screens in Groups A and B.RESULTS Before ultrasonic cleaning,no significant differences in air quality PM2.5 and colony counts were observed among the three groups.However,significant differences in air quality PM2.5 and colony counts were noted among the three groups during ultrasonic cleaning and after ultrasonic treatment.Additionally,the number of colonies on the exhaust port of the suction device and the surface of the filter were significantly lower in Group A than in Group B(P=0.000 and P=0.000,respectively).CONCLUSION Graphene nanocomposites can effectively sterilize the air in dental clinics by exerting their antimicrobial effects and may be used to reduce secondary pollution. 展开更多
关键词 GRAPHENE NANOCOMPOSITES Oral clinic air disinfection Secondary contamination
下载PDF
Effects of dust controls on respirable coal mine dust composition and particle sizes:case studies on auxiliary scrubbers and canopy air curtain
5
作者 F.Animah C.Keles +1 位作者 W.R.Reed E.Sarver 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期86-101,共16页
Control of dust in underground coal mines is critical for mitigating both safety and health hazards.For decades,the National Institute of Occupational Safety and Health(NIOSH)has led research to evaluate the effective... Control of dust in underground coal mines is critical for mitigating both safety and health hazards.For decades,the National Institute of Occupational Safety and Health(NIOSH)has led research to evaluate the effectiveness of various dust control technologies in coal mines.Recent studies have included the evaluation of auxiliary scrubbers to reduce respirable dust downstream of active mining and the use of canopy air curtains(CACs)to reduce respirable dust in key operator positions.While detailed dust characterization was not a focus of such studies,this is a growing area of interest.Using preserved filter samples from three previous NIOSH studies,the current work aims to explore the effect of two different scrubbers(one wet and one dry)and a roof bolter CAC on respirable dust composition and particle size distribution.For this,the preserved filter samples were analyzed by thermogravimetric analysis and/or scanning electron microscopy with energy dispersive X-ray.Results indicate that dust composition was not appreciably affected by either scrubber or the CAC.However,the wet scrubber and CAC appeared to decrease the overall particle size distribution.Such an effect of the dry scrubber was not consistently observed,but this is probably related to the particular sampling location downstream of the scrubber which allowed for significant mixing of the scrubber exhaust and other return air.Aside from the insights gained with respect to the three specific dust control case studies revisited here,this work demonstrates the value of preserved dust samples for follow-up investigation more broadly. 展开更多
关键词 Respirable dust Dust control SEM–EDX SCRUBBER Canopy air curtain SILICA
下载PDF
Response of Rice Cultivars to Elevated Air Temperature and Soil Amendments: Implications towards Climate Change Adaptations and Mitigating Global Warming Potentials
6
作者 Muhammad Aslam Ali S. K. Md. Fazlay Rabbi +8 位作者 Md. Abdul Baten Hafsa Jahan Hiya Shah Tasdika Auyon Md. Shamsur Rahman Deboki Kundu Khairul Amin Sanjit Chandra Barman Tanver Hossain Fariha Binte Nobi 《American Journal of Climate Change》 2024年第3期406-426,共21页
Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to inv... Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to investigate the response of rice cultivars to elevated air temperature (+1.5˚C higher than ambient) and soil amendments in regards to rice yield, yield scaled methane emissions and global warming potentials. The experimental findings revealed that replacement of inorganic fertilizers (20% - 40% of recommended NPKS) with Vermicompost, Azolla biofertilizer, enriched sugarcane pressmud, rice husk biochar and silicate fertilization increased rice yield 13.0% - 23.0%, and 11.0% - 19.0% during wet aman and dry boro season, respectively. However, seasonal cumulative CH4 fluxes were decreased by 9.0% - 25.0% and 5.0% - 19.0% during rainfed wet aman and irrigated dry boro rice cultivation, respectively with selected soil amendments. The maximum reduction in seasonal cumulative CH4 flux (19.0% - 25.0%) was recorded with silicate fertilization and azolla biofertilizer amendments (9.0% - 13.0%), whereas maximum grain yield increment 10.0 % - 14.0% was found with Vermicompost and Sugarcane pressmud amendments compared to chemical fertilization (100% NPKS) treated soils at ambient air temperature. However, rice grain yield decreased drastically 43.0% - 50.0% at elevated air temperature (3˚C higher than ambient air temperature), eventhough accelerated the total cumulative CH4 flux as well as GWPs in all treatments. Maximum seasonal mean GWPs were calculated at 391.0 kg CO2 eq·ha−1 in rice husk biochar followed by sugarcane pressmud (mean GWP 387.0 kg CO2 eq·ha−1), while least GWPs were calculated at 285 - 305 kg CO2 eq·ha−1 with silicate fertilizer and Azolla biofertilizer amendments. Rice cultivar BRRI dhan 87 revealed comparatively higher seasonal cumulative CH4 fluxes, yield scaled CH4 flux and GWPs than BRRI dhan 71 during wet aman rice growing season;while BRRI dhan 89 showed higher cumulative CH4 flux and GWPs than BINA dhan 10 during irrigated boro rice cultivation. Conclusively, inorganic fertilizers may be partially (20% - 40% of the recommended NPKS) replaced with Vermicompost, azolla biofertilizer, silicate fertilizer and enriched sugarcane pressmud compost for sustainable rice production and decreasing GWPs under elevated air temperature condition. 展开更多
关键词 Rice Paddy Soil Amendments CH4 Flux GWPs Elevated air Temperature
下载PDF
Block Incremental Dense Tucker Decomposition with Application to Spatial and Temporal Analysis of Air Quality Data
7
作者 SangSeok Lee HaeWon Moon Lee Sael 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期319-336,共18页
How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form... How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors.For example,air quality tensor data consists of multiple sensory values gathered from wide locations for a long time.Such data,accumulated over time,is redundant and consumes a lot ofmemory in its raw form.We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand between arbitrary time blocks.To this end,we propose a Block IncrementalDense Tucker Decomposition(BID-Tucker)method for efficient storage and on-demand modeling ofmultidimensional spatiotemporal data.Assuming that tensors come in unit blocks where only the time domain changes,our proposed BID-Tucker first slices the blocks into matrices and decomposes them via singular value decomposition(SVD).The SVDs of the time×space sliced matrices are stored instead of the raw tensor blocks to save space.When modeling from data is required at particular time blocks,the SVDs of corresponding time blocks are retrieved and incremented to be used for Tucker decomposition.The factor matrices and core tensor of the decomposed results can then be used for further data analysis.We compared our proposed BID-Tucker with D-Tucker,which our method extends,and vanilla Tucker decomposition.We show that our BID-Tucker is faster than both D-Tucker and vanilla Tucker decomposition and uses less memory for storage with a comparable reconstruction error.We applied our proposed BID-Tucker to model the spatial and temporal trends of air quality data collected in South Korea from 2018 to 2022.We were able to model the spatial and temporal air quality trends.We were also able to verify unusual events,such as chronic ozone alerts and large fire events. 展开更多
关键词 Dynamic decomposition tucker tensor tensor factorization spatiotemporal data tensor analysis air quality
下载PDF
KGTLIR:An Air Target Intention Recognition Model Based on Knowledge Graph and Deep Learning
8
作者 Bo Cao Qinghua Xing +2 位作者 Longyue Li Huaixi Xing Zhanfu Song 《Computers, Materials & Continua》 SCIE EI 2024年第7期1251-1275,共25页
As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in ... As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in intention recognition,this paper designs an air target intention recognition method(KGTLIR)based on Knowledge Graph and Deep Learning.Firstly,the intention recognition model based on Deep Learning is constructed to mine the temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention features using a graph attention mechanism.Meanwhile,the accuracy,recall,and F1-score after iteration are introduced to dynamically adjust the sample weights to reduce the probability of misclassification.After that,an intention recognition model based on Knowledge Graph is constructed to predict the probability of the occurrence of different intentions of the target.Finally,the results of the two models are fused by evidence theory to obtain the target’s operational intention.Experiments show that the intention recognition accuracy of the KGTLIRmodel can reach 98.48%,which is not only better than most of the air target intention recognition methods,but also demonstrates better interpretability and trustworthiness. 展开更多
关键词 Dilated causal convolution graph attention mechanism intention recognition air targets knowledge graph
下载PDF
Effects of temperature, particle size, and air humidity on sensibility of typical high-energetic explosives
9
作者 WU Sanzhen FANG Mingkun +3 位作者 WU Xingliang GUO Guangfei WANG Junhong XU Sen 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期408-416,共9页
The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humid... The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions. 展开更多
关键词 high-energetic explosives TEMPERATURE particle size air humidity critical reaction energy
下载PDF
Rational Design of Ruddlesden-Popper Perovskite Ferrites as Air Electrode for Highly Active and Durable Reversible Protonic Ceramic Cells
10
作者 Na Yu Idris Temitope Bello +4 位作者 Xi Chen Tong Liu Zheng Li Yufei Song Meng Ni 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期308-324,共17页
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7... Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage. 展开更多
关键词 Reversible protonic ceramic cells air electrode Ruddlesden-Popper perovskite HYDRATION Oxygen reduction reaction
下载PDF
Factors Influencing the Spatial Variability of Air Temperature Urban Heat Island Intensity in Chinese Cities
11
作者 Heng LYU Wei WANG +3 位作者 Keer ZHANG Chang CAO Wei XIAO Xuhui LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期817-829,共13页
Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spat... Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spatial variations of the AUHI across China and the underlying climate and ecological drivers.A total of 355 urban clusters were used.We performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation.The results show that the midday AUHI is negatively correlated with climate wetness(humid:0.34 K;semi-humid:0.50 K;semi-arid:0.73 K).The annual mean midnight AUHI does not show discernible spatial patterns,but is generally stronger than the midday AUHI.The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in the humid(0.32±0.09 K)and the semi-arid(0.36±0.11 K)climate zones.The release of anthropogenic heat from urban land is the dominant contributor to the midnight AUHI in all three climate zones.The rural vegetation density is the most important driver of the daytime and nighttime AUHI spatial variations.A spatial covariance analysis revealed that this vegetation influence is manifested mainly through its regulation of heat storage in rural land. 展开更多
关键词 air temperature urban heat island spatial variations biophysical drivers Chinese cities climate model
下载PDF
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
12
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage Compressed air energy storage Mechanical response Thermodynamic response Lined rock caverns
下载PDF
Audio-Text Multimodal Speech Recognition via Dual-Tower Architecture for Mandarin Air Traffic Control Communications
13
作者 Shuting Ge Jin Ren +3 位作者 Yihua Shi Yujun Zhang Shunzhi Yang Jinfeng Yang 《Computers, Materials & Continua》 SCIE EI 2024年第3期3215-3245,共31页
In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a p... In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a promising means of preventing miscommunications and enhancing aviation safety. However, most existing speech recognition methods merely incorporate external language models on the decoder side, leading to insufficient semantic alignment between speech and text modalities during the encoding phase. Furthermore, it is challenging to model acoustic context dependencies over long distances due to the longer speech sequences than text, especially for the extended ATCC data. To address these issues, we propose a speech-text multimodal dual-tower architecture for speech recognition. It employs cross-modal interactions to achieve close semantic alignment during the encoding stage and strengthen its capabilities in modeling auditory long-distance context dependencies. In addition, a two-stage training strategy is elaborately devised to derive semantics-aware acoustic representations effectively. The first stage focuses on pre-training the speech-text multimodal encoding module to enhance inter-modal semantic alignment and aural long-distance context dependencies. The second stage fine-tunes the entire network to bridge the input modality variation gap between the training and inference phases and boost generalization performance. Extensive experiments demonstrate the effectiveness of the proposed speech-text multimodal speech recognition method on the ATCC and AISHELL-1 datasets. It reduces the character error rate to 6.54% and 8.73%, respectively, and exhibits substantial performance gains of 28.76% and 23.82% compared with the best baseline model. The case studies indicate that the obtained semantics-aware acoustic representations aid in accurately recognizing terms with similar pronunciations but distinctive semantics. The research provides a novel modeling paradigm for semantics-aware speech recognition in air traffic control communications, which could contribute to the advancement of intelligent and efficient aviation safety management. 展开更多
关键词 Speech-text multimodal automatic speech recognition semantic alignment air traffic control communications dual-tower architecture
下载PDF
Mathematical Modelling and Design of Helical Coil Heat Exchanger for Production of Hot Air for Fluidized Bed Dryer
14
作者 Iniubong James Uwa Uwem Ekwere Inyang Innocent Oseribho Oboh 《Advances in Chemical Engineering and Science》 CAS 2024年第3期125-136,共12页
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h... In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers. 展开更多
关键词 Helical Coil Heat Exchanger Fluidized Bed Dryer Heat Transfer Output air Temperature
下载PDF
Optimal confrontation position selecting games model and its application to one-on-one air combat
15
作者 Zekun Duan Genjiu Xu +2 位作者 Xin Liu Jiayuan Ma Liying Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期417-428,共12页
In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position beco... In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm. 展开更多
关键词 Unmanned aerial vehicles(UAVs) air combat Continuous strategy space Mixed strategy Nash equilibrium
下载PDF
An Analysis of Specific Categories of Birth Defects and Developmental Disabilities for Children of Participants of the Air Force Health Study
16
作者 George J. Knafl 《Open Journal of Epidemiology》 2024年第2期312-330,共19页
Background: The Air Force Health Study collected reproductive outcomes for live-born children of male Air Force veterans of the Vietnam War. Methods: Dioxin values for participants were obtained from blood samples. An... Background: The Air Force Health Study collected reproductive outcomes for live-born children of male Air Force veterans of the Vietnam War. Methods: Dioxin values for participants were obtained from blood samples. Analyses were conducted of occurrence of 16 specific categories of birth defects and developmental disabilities. Children were categorized as conceived before and after the start of participants’ Vietnam War service. Children conceived before the start of Vietnam War service were treated as being conceived when their fathers had unquantifiable dioxin values. Children conceived after the start of Vietnam War service for participants with missing dioxin values were excluded from primary analyses, but were used to assess the impact of their exclusion on conclusions. Correlation between values for specific categories for multiple children fathered by the same participant was accounted for. The dose-response relationship was treated as a step function increasing for dioxin values larger than adaptively identified individual thresholds changing with the specific category. Results: For 15 of 16 specific categories, the probability of occurrence increased substantially for a sufficiently high dioxin level above identified thresholds. Exclusion of children due to missing dioxin likely did not affect these results. Conclusions: Results supported the conclusion of substantial adverse effects on a wide variety of specific categories of birth defects and developmental disabilities due to sufficiently high exposures to dioxin, a toxic contaminant of Agent Orange used for herbicide spraying in the Vietnam War. Results may hold more generally, but might also have been affected by a variety of limitations. 展开更多
关键词 Agent Orange air Force Health Study Birth Defects Developmental Disabilities DIOXIN Dose-Response Relationship Vietnam War
下载PDF
Impact of Air Pollutants on Lung Function and Inflammatory Response in Asthma in Shanghai
17
作者 Guifang Wang Youzhi Zhang +6 位作者 Haiyan Yang Yi Yang Liang Dong Peng Zhang Jie Liu Xiaodong Chen Yi Gong 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第8期811-822,共12页
Objective Air pollution is a leading public health issue.This study investigated the effect of air quality and pollutants on pulmonary function and inflammation in patients with asthma in Shanghai.Methods The study mo... Objective Air pollution is a leading public health issue.This study investigated the effect of air quality and pollutants on pulmonary function and inflammation in patients with asthma in Shanghai.Methods The study monitored 27 asthma outpatients for a year,collecting data on weather,patient self-management[daily asthma diary,peak expiratory flow(PEF)monitoring,medication usage],spirometry and serum markers.To explore the potential mechanisms of any effects,asthmatic mice induced by ovalbumin(OVA)were exposed to PM_(2.5).Results Statistical and correlational analyses revealed that air pollutants have both acute and chronic effects on asthma.Acute exposure showed a correlation between PEF and levels of ozone(O_(3))and nitrogen dioxide(NO_(2)).Chronic exposure indicated that interleukin-5(IL-5)and interleukin-13(IL-13)levels correlated with PM_(2.5)and PM_(10)concentrations.In asthmatic mouse models,exposure to PM_(2.5)increased cytokine levels and worsened lung function.Additionally,PM_(2.5)exposure inhibited cell proliferation by blocking the NF-κB and ERK phosphorylation pathways.Conclusion Ambient air pollutants exacerbate asthma by worsening lung function and enhancing Th2-mediated inflammation.Specifically,PM_(2.5)significantly contributes to these adverse effects.Further research is needed to elucidate the mechanisms by which PM_(2.5)impacts asthma. 展开更多
关键词 Ambient air pollutants Acute and chronic effects on asthma PM_(2.5) OVA-induced asthmatic mice
下载PDF
Evaluation of Air-Kerma and Absorbed Dose to Water for External Radiotherapy Beam Using Ionization Chamber
18
作者 Collins Omondi Margaret Chege Samson Omondi 《Open Journal of Radiology》 2024年第3期113-124,共12页
Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement... Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement using ionization chamber is a prerequisite for absorbed dose determination for external beam radiotherapy. Calibration coefficient is expressed in terms of air kerma and absorbed dose to water traceable to Secondary Standards Dosimetry Laboratory. The objective of this work was to evaluate the level of accuracy of ionization chamber used for clinical radiotherapy beam determination. Measurement and accuracy determination were carried out according to IAEA TRS 398 protocol. Clinical farmers type ionization chamber measurement and National Reference standard from Secondary Standards Dosimetry Laboratory were both exposed to cobalt-60 beam and measurement results compared under the same environmental conditions. The accuracy level between National Reference Standard and clinical radiotherapy standard was found to be −1.92% and −2.02% for air kerma and absorbed dose to water respectively. To minimize the effect of error and maximize therapeutic dose during treatment in order to achieve required clinical outcome, calibration factor was determined for air kerma (Nk) as 49.7 mGy/nC and absorbed dose to water ND, as 52.9 mGy/nC. The study established that radiotherapy beam measurement chain is prone to errors. Hence there is a need to independently verify the accuracy of radiation dose to ensure precision of dose delivery. The errors must be accounted for during clinical planning by factoring in calibration factor to minimize the systematic errors during treatment, and thereby providing enough room to achieve ±5% dose delivery to tumor target as recommended by ICRU. 展开更多
关键词 Absorbed Dose to Water air Kerma Co-60 Source Calibration SSDL Radiotherapy Beam METROLOGY Accuracy and Accuracy
下载PDF
Climate change,ambient air pollution,and students'mental health
19
作者 Jing-Xuan Wang Xin-Qiao Liu 《World Journal of Psychiatry》 SCIE 2024年第2期204-209,共6页
The impact of global climate change and air pollution on mental health has become a crucial public health issue.Increased public awareness of health,advancements in medical diagnosis and treatment,the way media outlet... The impact of global climate change and air pollution on mental health has become a crucial public health issue.Increased public awareness of health,advancements in medical diagnosis and treatment,the way media outlets report environmental changes and the variation in social resources affect psychological responses and adaptation methods to climate change and air pollution.In the context of climate change,extreme weather events seriously disrupt people's living environments,and unstable educational environments lead to an increase in mental health issues for students.Air pollution affects students'mental health by increasing the incidence of diseases while decreasing contact with nature,leading to problems such as anxiety,depression,and decreased cognitive function.We call for joint efforts to reduce pollutant emissions at the source,improve energy structures,strengthen environmental monitoring and governance,increase attention to the mental health issues of students,and help student groups build resilience;by establishing public policies,enhancing social support and adjusting lifestyles and habits,we can help students cope with the constantly changing environment and maintain a good level of mental health.Through these comprehensive measures,we can more effectively address the challenges of global climate change and air pollution and promote the achievement of the United Nations Sustainable Development Goals. 展开更多
关键词 Climate change Ambient air pollution Mental health Energy structure Public policy Sustainable development
下载PDF
Influence of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation on Antarctic surface air temperature during 1900 to 2015
20
作者 Cuijuan Sui Lejiang Yu +2 位作者 Alexey YuKarpechko Licheng Feng Shan Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期48-58,共11页
The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,prev... The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,previous studies have primarily concentrated on examining the combined impact of the contrasting phases of the AMO and IPO,which have been dominant since the advent of satellite observations in 1979.This study utilizes long-term reanalysis data to investigate the impact of four combinations of+AMO+IPO,–AMO–IPO,+AMO–IPO,and–AMO+IPO on Antarctic SAT over the past 115 years.The+AMO phase is characterized by a spatial mean temperature amplitude of up to 0.5℃over the North Atlantic Ocean,accompanied by positive sea surface temperature(SST)anomalies in the tropical eastern Pacific and negative SST anomalies in the extratropical-mid-latitude western Pacific,which are indicative of the+IPO phase.The Antarctic SAT exhibits contrasting spatial patterns during the+AMO+IPO and+AMO–IPO periods.However,during the–AMO+IPO period,apart from the Antarctic Peninsula and the vicinity of the Weddell Sea,the entire Antarctic region experiences a warming trend.The most pronounced signal in the SAT anomalies is observed during the austral autumn,whereas the combination of–AMO and–IPO exhibits the smallest magnitude across all the combinations.The wavetrain excited by the SST anomalies associated with the AMO and IPO induces upper-level and surface atmospheric circulation anomalies,which alter the SAT anomalies.Furthermore,downward longwave radiation anomalies related to anomalous cloud cover play a crucial role.In the future,if the phases of AMO and IPO were to reverse(AMO transitioning to a negative phase and IPO transitioning to a positive phase),Antarctica could potentially face more pronounced warming and accelerated melting compared to the current observations. 展开更多
关键词 Atlantic Multidecadal Oscillation(AMO) Interdecadal Pacific Oscillation(IPO) surface air temperature ANTARCTIC wavetrain Rossby wave source
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部