The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and me...The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and mechanical behavior of B-doped Sm_(2)Co_(17)-type magnets with high Fe content.The doped B atoms can diffuse into the interstitial vacancy,resulting in lattice expansion and promote the homogenization of the phase organizational structure during the solid solution treatment in theory.However,the resulting second phase plays a dominant role to result in more microtwin structures and highly ordered 2:17R phases in the solid solution stage,which inhibits the ordering transformation of 1:7H phase during aging and affects the generation of the cellular structure,and to result in a decrease in magnetic properties,yet the interface formed between it and the matrix phase hinders the movement of dislocations and enhances the mechanical properties.Hence,the precipitation of high flexural strain grain boundary phase induced by B element doping is also a new and effective way to improve the flexural strain of Sm_(2)Co_(17)-type magnets.Our study provides a new understanding of the phase structure evolution and its effect on the magnetic and mechanical properties of Sm_(2)Co_(17)-type magnets with high Fe content.展开更多
Coral sand is a unique material developed in the tropical ocean environment, which is mainly composed of coral and other marine organism debris, with the CaCO3 content up to 96 %. It has special physical and mechanica...Coral sand is a unique material developed in the tropical ocean environment, which is mainly composed of coral and other marine organism debris, with the CaCO3 content up to 96 %. It has special physical and mechanical properties due to its composition, structure and sedimentary environment. In this contribution, we discuss its specific gravity, porosity ratio compressibility, crushing, shearing and intensity for coral sand samples from the Nansha islands based on laboratory mechanical tests. Our results show distinct high porosity ratio, high friction angle and low intensity as compared with the quartz sand. We believe that grain crushing is the main factor that influences the deformation and strength of coral sand. Comprehensive study on the physical and mechanical properties of coral sands is significant in providing reliable scientific parameters to construction on coral islet, and thus avoids accidents in construction.展开更多
In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and ...In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.展开更多
FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of th...FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of the composites decreases with the content of TiC increasing, and the addition of Ni significantly improves the densificationprocess by enhancing mass transfer in the bonding phase. The mechanical properties of the composites are closelyrelated with their porosity. Besides increasing the density of the composites, the addition of Ni improves the mechanical properties by other three effects: solution-strengthening the bonding phase, strengthening the FeAI-TiC interfaceand increasing ductile fracture in FeAl phase.展开更多
Effects of swirnming on bone density and mechanical properties of femur were investigated in aged male and female mice. R/1 strain of senescence accelerated mouse (SAM) at eleven months old was used. Two groups of mal...Effects of swirnming on bone density and mechanical properties of femur were investigated in aged male and female mice. R/1 strain of senescence accelerated mouse (SAM) at eleven months old was used. Two groups of males and two groups of females each consisting of 7 mice were used. One male and one female groups were loaded with a swim regiment of 40 min a day, 5 days a week for 6 consecutive weeks. The remaining groups were used as the controls. All mice were fed with the standard diet and water ad libitum during the experiments.The results of this study indicated that (i) the hady weight was significantly (P<0.05) lower in the swimming groups than in the control groups in boh sexes. (ii) The bone density was significantly higher (P <0.05) in the swimming groups than in the control groups in boh sexes. However, there was no sighficant difference in cortical thickness index. (iii) In the mechanical properties of bone, there were no significant differences in the level of the maximum breaking force, the ultimate stress and the deformation between the swimndng and the contro groups in beth sexes. However, the elasticity of the bone of the female hoce in the swimming group was significantly higher (P<0.05) than that of the control group.These results suggest that regimented swimming for the aged mice might suppress age-associated bone loss, and the effect of exercise in the females is greater that in the males.展开更多
We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,5...We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,50,100,and 150 g kg-1dry wood fibers.Density of all treatments was kept constant at 0.67 g cm-3.The water-repellent property of organo-silane significantly reduced water absorption(WA) and thickness swelling but mechanical properties declined due to the reduced proportion of wood-fiber as organo-silane was added to the matrix:the compression ratio of MDF panels and the integrity among wood-fibers both declined,resulting in reduced mechanical properties.We recommend use of 50 g of NOS/kg wood-fiber to improve WA and thickness swelling while retaining acceptable mechanical properties.展开更多
Ultrahigh-molecular-weight polyethylene(UtlMWPE) has been irradiated (0-40 Mrad) with a Co^(60) source at room temperature under vacuum. Their crystallinity has been investigated by DSC and SAXS A significant increase...Ultrahigh-molecular-weight polyethylene(UtlMWPE) has been irradiated (0-40 Mrad) with a Co^(60) source at room temperature under vacuum. Their crystallinity has been investigated by DSC and SAXS A significant increase of heat of fusion can be seen at low irradiation doses, which is attributed to crystallization caused by chain scission during the process of irradiation. It is also observed that thickness of lamellae changes with irradiation dose. Young's modulus has been improved significantly after irradiation at low doses.展开更多
A low-alloyed Mg-2Zn-0.8Sr-0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic,and then the as-cast composite was hot extruded.Th...A low-alloyed Mg-2Zn-0.8Sr-0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic,and then the as-cast composite was hot extruded.The results indicated that the volume fraction of dynamical recrystallization and the recrystallized grain size have a certain decline at lower extrusion temperature or rate.The finest grain size of~0.30μm is obtained in the sample extruded at 200℃ and 0.1 mm/s.The as-extruded sample displays a strong basal texture intensity,and the basal texture intensity increases to 5.937 mud while the extrusion temperature increases from 200 to 240℃.The ultra-high mechanical properties(ultimate tensile strength of 480.2 MPa,yield strength of 462 MPa)are obtained after extrusion at 200℃ with a rate of 0.1 mm/s.Among all strengthening mechanisms for the present composite,the grain refinement contributes the most to the increase in strength.A mixture of cleavage facets and dimples were observed in the fracture surfaces of three as-extruded nanocomposites,which explain a mix of brittle-ductile fracture way of the samples.展开更多
Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the ...Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the composites were increased by the addition of SiC platelet until the content up to 20 vol pct. A slight decrease in flexural Strength was measured at room temperature with increasing SiC platelet content. The high temperature flexural strength tests at 1150, 1250, and 1350℃ were conducted. It was found that the flexural strength at elevated temperature was degraded with the rising temperature, and the downward trend of flexural strength for the composite containing 10 vol. pct SiC platelet was less. The results indicate that SiC platelet had a positive influence on the high temperature strength. Effects of SiC platelet reinforcement were presented展开更多
The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high...The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high plasticity for building facilities. The effects of quenching process on microstructure and mechanical properties of tested steel were investigated. The results showed that prior austenite grain size, phase type and precipitation behavior of ( Nb, Ti) ( C, N) play important roles in mechanical properties of the steel. Through modified appropriately, the model of austenite grain growth during heating and holding is d^5.7778 = 5. 6478^5.7778 + 7.04 × 10^22t^1.6136 exp(- 427. 15 ×10^3 /(RT)). The grain growth activation energy is Qg = 427. 15 kJ. During quenching, the microscopic structures are mainly martensite and lath bainite which contains lots of lath substructure and dislocations. The content of phases, fine and coarsening ( Nb, Ti ) ( C, N ) precipitated changes during different quenching temperatures and holding time. Finally compared with the hardness value, the best quenching process can be obtained that heating temperature and holding time are 900 ℃ and 50 mins, respectively.展开更多
The fabrication. microstructure and mechanical properties of ZrO2-Ni functionally gradient materials (FGM ) have been studied. FGM as well as non-FG M of ZrO2-Ni system was developed by powder metallurgical process. X...The fabrication. microstructure and mechanical properties of ZrO2-Ni functionally gradient materials (FGM ) have been studied. FGM as well as non-FG M of ZrO2-Ni system was developed by powder metallurgical process. X-ray diffractometer (XRD ). electron probe microanalyzer (EPMA), scanning electron microscope (SEM ) and optical microscope were employed to investigate the crystalline phases. chemical composition and microstructure Experimental results demonstrate that the composition and microstructure of ZrO2-Ni FGM have the expected gradient distribution. There are no distinct interfaces in the FGM due to the gradient change of components. that is, the constituents are continuous in microstructure everywhere. Moreover, Vickers hardness and flexural strength were measured for the common composites as a function of composition. It is made clear that the mechanical properties of the FGM vary corresponding to the constitutional changes as well展开更多
In order to better design, fabricate and control pear handling machine, we should take into account mechanical and rheological properties of pear fruits as related to handling process. The changes in rheological prope...In order to better design, fabricate and control pear handling machine, we should take into account mechanical and rheological properties of pear fruits as related to handling process. The changes in rheological properties of pears stored at 5, 15, 25 ℃ and variable (fluctuating) temperature for 12 days were evaluated in terms of elasticity and viscosity parameters using creep tests. The elasticity and viscosity parameters in creep tests in general decreased with increase in storage time both under constant and variable storage conditions. For the variable storage condition, a bulk mean temperature calculated to account for a series combination of storage time and temperature to which the pears subjected. The changes in rheological properties due to variable storage temperature were described as a function of storage time. The result indicated that except the viscosity parameter of the Maxwell component of the four-element model, it was possible to describe the changes in rheological properties as a function of storage time, which are better physical parameters to estimate the quality of pears.展开更多
In deep-earth engineering,the high earth temperature can significantly affect the rock's mechanical properties,especially when the rock is cooled during the construction process.Accordingly,whether the cooling spe...In deep-earth engineering,the high earth temperature can significantly affect the rock's mechanical properties,especially when the rock is cooled during the construction process.Accordingly,whether the cooling speed affects the mechanical and physical properties of rocks is worth to be investigated.The present study explored the influence of the cooling rate on the physical and chemical properties of granite heated at 25–800°C.The mechanical and physical properties involved in this study included uniaxial compression strength,peak strain,modulus,P-wave velocity,mass and volume,the change of which could reflect the sensitivity of granite to the cooling rate.Acoustic emission(AE)monitoring,microscopic observation,and X-ray diffraction(XRD)are used to analyze the underlying damage mechanism.It is found that more AE signals and large-scale cracks are accounted for based on the b-value method when the specimens are cooled by water.Furthermore,the microscopic observation by polarized light microscopy indicates that the density,opening degree,and connectivity of the cracks under water cooling mode are higher than that under natural cooling mode.In addition,the XRD illustrates that there is no obvious change in mineral content and diffraction angle at different temperatures,which confirms that the change of mechanical properties is not related to the chemical properties.The present conclusion can provide a perspective to assess the damage caused by different cooling methods to hot rocks.展开更多
The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber,glass fiber and multi-wall carbon nanotubes(MWCNTs)were m...The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber,glass fiber and multi-wall carbon nanotubes(MWCNTs)were manufactured. The physical and mechanical properties of the manufactured composites were measured according to standard methods. The properties of the manufactured hybrid nanocomposites were dramatically better than traditional composites. Also all the reinforced composites with carbon nanotube, glass fiber or bagasse fiber exhibited better properties rather than neat cement.The results indicated that bagasse fiber proved suitable for substitution of glass fiber as a reinforcing agent in the cement composites. The hybrid nanocomposite containing10 % glass fiber, 10 % bagasse fiber and 1.5 % MWCNTs was selected as the best compound.展开更多
We present an analysis of structural, electronic, and mechanical properties of cubic titanium dioxide (TiO2) using an all electron orthogonalzed linear combinations of atomic orbitals (OLCAO) basis set under the f...We present an analysis of structural, electronic, and mechanical properties of cubic titanium dioxide (TiO2) using an all electron orthogonalzed linear combinations of atomic orbitals (OLCAO) basis set under the framework of density functional theory (DFT). The structural property, especially the lattice constant a, and the electronic properties such as the band diagram and density of states (DOS) are studied and analyzed. The mechanical properties such as bulk moduli, shear moduli, Young's Moduli, and Poison's ratio are also investigated thoroughly. The calculations are carried out on shear moduli and anisotropy factor for cubic TiO2. The Vickers hardness is also tested for fluorite and pyrite cubic-structured TiO2. Furthermore, the results are compared with the previous theoretical and experimental results. It is found that DFT- based simulation produces results which are approximation to experimental results, whereas the calculated elastic constants are better than the previous theoretical and experimental values.展开更多
In two-phase TiAl alloys, the lamellar structures are of special interest and importance since they are so common and persistent. not only under as-cast conditions but also after thermal treatment. However. the lamell...In two-phase TiAl alloys, the lamellar structures are of special interest and importance since they are so common and persistent. not only under as-cast conditions but also after thermal treatment. However. the lamellar structures are still poor in ductility,although they are beneficial for toughness and high temperature strength. This article will review the recent progress made in understanding the basic mechanical properties of the γ and α2 phases which comprise the two-phase alloys in Iamellar form, and discuss how an improved balance of strength and ductillty in the lamellar form may be achieved展开更多
The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of pro...The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed.展开更多
The AB-crosslinked polymers (i.e. ABCP) with polystyrene as chain A and vinyl group blocked prepolymers of polyurethanes (PU) as chain B were synthesized and studied. The results of dynamic mechanical spectrometry (DM...The AB-crosslinked polymers (i.e. ABCP) with polystyrene as chain A and vinyl group blocked prepolymers of polyurethanes (PU) as chain B were synthesized and studied. The results of dynamic mechanical spectrometry (DMS) show that the compatibility between the components A and B can be improved greatly through chemical crosslinking during the formation of ABCPs. This effect is especially pronounced when short chain prepolymers is chosen as one of the components. It is apparent that the degree of crosslinking between the two components plays a major role in determining their compatibility. Copolymerizafion of styrene with maleic anhydride in chain A can improve the compatibility and broaden the damping temperature range. Mechanical properties of the sythesized ABCPs were also studied.展开更多
The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite ...The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite at ambient temperature are a little higher than those of Dy-α-sialon.while the bending strength is maintained up to 1000℃ and about 2 times more than that of Dy-α-sialon at the same temperature. The fracture surfaces show that the grain size of the composite is smaller than that of Dy-α-sialon, and both Of them have predominately transgranular mode of fracture. It is believed that the decrease of the bending strength of Dy-α-sialon at elevated temperature is caused by the viscous flow of the grain boundary phase, while the addition of nanosize SiC particles effectively increases the viscosity of the grain boundary phase and therefore prevents the strength loss of Dy-α-sialon/nano-size SiC composites at elevated temperature展开更多
基金the NationalKey R&D Program of China (Grant Nos. 2021YFB3503102and 2022YFB3505301)Science and Technology Innovation2025 Major Project of Ningbo (Grant No. 2022Z204)+2 种基金ZhejiangProvincial Natural Science Foundation Youth OriginalProject (Grant No. LDQ24E010001)the Key R&D Programof Shanxi Province (Grant No. 202302050201014)Ningbo Natural Science Foundation (Grant No. 2021J216).
文摘The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and mechanical behavior of B-doped Sm_(2)Co_(17)-type magnets with high Fe content.The doped B atoms can diffuse into the interstitial vacancy,resulting in lattice expansion and promote the homogenization of the phase organizational structure during the solid solution treatment in theory.However,the resulting second phase plays a dominant role to result in more microtwin structures and highly ordered 2:17R phases in the solid solution stage,which inhibits the ordering transformation of 1:7H phase during aging and affects the generation of the cellular structure,and to result in a decrease in magnetic properties,yet the interface formed between it and the matrix phase hinders the movement of dislocations and enhances the mechanical properties.Hence,the precipitation of high flexural strain grain boundary phase induced by B element doping is also a new and effective way to improve the flexural strain of Sm_(2)Co_(17)-type magnets.Our study provides a new understanding of the phase structure evolution and its effect on the magnetic and mechanical properties of Sm_(2)Co_(17)-type magnets with high Fe content.
文摘Coral sand is a unique material developed in the tropical ocean environment, which is mainly composed of coral and other marine organism debris, with the CaCO3 content up to 96 %. It has special physical and mechanical properties due to its composition, structure and sedimentary environment. In this contribution, we discuss its specific gravity, porosity ratio compressibility, crushing, shearing and intensity for coral sand samples from the Nansha islands based on laboratory mechanical tests. Our results show distinct high porosity ratio, high friction angle and low intensity as compared with the quartz sand. We believe that grain crushing is the main factor that influences the deformation and strength of coral sand. Comprehensive study on the physical and mechanical properties of coral sands is significant in providing reliable scientific parameters to construction on coral islet, and thus avoids accidents in construction.
基金financially supported by the fund of the Key Projects of Shaanxi Provincial International Technology Cooperation Plan(2013KW16)the Scientific Research Program funded by Shaanxi Provincial Education Department(2013JK0914)+2 种基金the State Key Laboratory of Solidifi cation Processing in NWPU(SKLSP201115)the Scientific Research Project of Xi'an University of Technology(2013CX004)the fund of the Key Laboratory of Electrical Materials and Infi ltration Technology of Shaanxi Province,China(2014)
文摘In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 &#176;C and 135 min, and austempering temperature and time are 279 &#176;C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.
基金This work was supported by Hunan Provincial Natural Science Foundation.
文摘FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of the composites decreases with the content of TiC increasing, and the addition of Ni significantly improves the densificationprocess by enhancing mass transfer in the bonding phase. The mechanical properties of the composites are closelyrelated with their porosity. Besides increasing the density of the composites, the addition of Ni improves the mechanical properties by other three effects: solution-strengthening the bonding phase, strengthening the FeAI-TiC interfaceand increasing ductile fracture in FeAl phase.
文摘Effects of swirnming on bone density and mechanical properties of femur were investigated in aged male and female mice. R/1 strain of senescence accelerated mouse (SAM) at eleven months old was used. Two groups of males and two groups of females each consisting of 7 mice were used. One male and one female groups were loaded with a swim regiment of 40 min a day, 5 days a week for 6 consecutive weeks. The remaining groups were used as the controls. All mice were fed with the standard diet and water ad libitum during the experiments.The results of this study indicated that (i) the hady weight was significantly (P<0.05) lower in the swimming groups than in the control groups in boh sexes. (ii) The bone density was significantly higher (P <0.05) in the swimming groups than in the control groups in boh sexes. However, there was no sighficant difference in cortical thickness index. (iii) In the mechanical properties of bone, there were no significant differences in the level of the maximum breaking force, the ultimate stress and the deformation between the swimndng and the contro groups in beth sexes. However, the elasticity of the bone of the female hoce in the swimming group was significantly higher (P<0.05) than that of the control group.These results suggest that regimented swimming for the aged mice might suppress age-associated bone loss, and the effect of exercise in the females is greater that in the males.
基金conducted as a joint research projectfinanced by SRTTU(Iran)UPM(Malaysia)
文摘We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,50,100,and 150 g kg-1dry wood fibers.Density of all treatments was kept constant at 0.67 g cm-3.The water-repellent property of organo-silane significantly reduced water absorption(WA) and thickness swelling but mechanical properties declined due to the reduced proportion of wood-fiber as organo-silane was added to the matrix:the compression ratio of MDF panels and the integrity among wood-fibers both declined,resulting in reduced mechanical properties.We recommend use of 50 g of NOS/kg wood-fiber to improve WA and thickness swelling while retaining acceptable mechanical properties.
文摘Ultrahigh-molecular-weight polyethylene(UtlMWPE) has been irradiated (0-40 Mrad) with a Co^(60) source at room temperature under vacuum. Their crystallinity has been investigated by DSC and SAXS A significant increase of heat of fusion can be seen at low irradiation doses, which is attributed to crystallization caused by chain scission during the process of irradiation. It is also observed that thickness of lamellae changes with irradiation dose. Young's modulus has been improved significantly after irradiation at low doses.
基金financially supported by the National Natural Science Foundation of China (Nos. 51771129, 51401144, and 51771128)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China+1 种基金the Natural Science Foundation of Shanxi Province, China (Nos. 2015021067 and 201601D011034)the Projects of International Cooperation in Shanxi, China (No. 2017 03D421039)
文摘A low-alloyed Mg-2Zn-0.8Sr-0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic,and then the as-cast composite was hot extruded.The results indicated that the volume fraction of dynamical recrystallization and the recrystallized grain size have a certain decline at lower extrusion temperature or rate.The finest grain size of~0.30μm is obtained in the sample extruded at 200℃ and 0.1 mm/s.The as-extruded sample displays a strong basal texture intensity,and the basal texture intensity increases to 5.937 mud while the extrusion temperature increases from 200 to 240℃.The ultra-high mechanical properties(ultimate tensile strength of 480.2 MPa,yield strength of 462 MPa)are obtained after extrusion at 200℃ with a rate of 0.1 mm/s.Among all strengthening mechanisms for the present composite,the grain refinement contributes the most to the increase in strength.A mixture of cleavage facets and dimples were observed in the fracture surfaces of three as-extruded nanocomposites,which explain a mix of brittle-ductile fracture way of the samples.
文摘Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the composites were increased by the addition of SiC platelet until the content up to 20 vol pct. A slight decrease in flexural Strength was measured at room temperature with increasing SiC platelet content. The high temperature flexural strength tests at 1150, 1250, and 1350℃ were conducted. It was found that the flexural strength at elevated temperature was degraded with the rising temperature, and the downward trend of flexural strength for the composite containing 10 vol. pct SiC platelet was less. The results indicate that SiC platelet had a positive influence on the high temperature strength. Effects of SiC platelet reinforcement were presented
基金Sponsored by the Major State Basic Research Development Program of China(Grant No.2010CB630801)
文摘The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high plasticity for building facilities. The effects of quenching process on microstructure and mechanical properties of tested steel were investigated. The results showed that prior austenite grain size, phase type and precipitation behavior of ( Nb, Ti) ( C, N) play important roles in mechanical properties of the steel. Through modified appropriately, the model of austenite grain growth during heating and holding is d^5.7778 = 5. 6478^5.7778 + 7.04 × 10^22t^1.6136 exp(- 427. 15 ×10^3 /(RT)). The grain growth activation energy is Qg = 427. 15 kJ. During quenching, the microscopic structures are mainly martensite and lath bainite which contains lots of lath substructure and dislocations. The content of phases, fine and coarsening ( Nb, Ti ) ( C, N ) precipitated changes during different quenching temperatures and holding time. Finally compared with the hardness value, the best quenching process can be obtained that heating temperature and holding time are 900 ℃ and 50 mins, respectively.
文摘The fabrication. microstructure and mechanical properties of ZrO2-Ni functionally gradient materials (FGM ) have been studied. FGM as well as non-FG M of ZrO2-Ni system was developed by powder metallurgical process. X-ray diffractometer (XRD ). electron probe microanalyzer (EPMA), scanning electron microscope (SEM ) and optical microscope were employed to investigate the crystalline phases. chemical composition and microstructure Experimental results demonstrate that the composition and microstructure of ZrO2-Ni FGM have the expected gradient distribution. There are no distinct interfaces in the FGM due to the gradient change of components. that is, the constituents are continuous in microstructure everywhere. Moreover, Vickers hardness and flexural strength were measured for the common composites as a function of composition. It is made clear that the mechanical properties of the FGM vary corresponding to the constitutional changes as well
文摘In order to better design, fabricate and control pear handling machine, we should take into account mechanical and rheological properties of pear fruits as related to handling process. The changes in rheological properties of pears stored at 5, 15, 25 ℃ and variable (fluctuating) temperature for 12 days were evaluated in terms of elasticity and viscosity parameters using creep tests. The elasticity and viscosity parameters in creep tests in general decreased with increase in storage time both under constant and variable storage conditions. For the variable storage condition, a bulk mean temperature calculated to account for a series combination of storage time and temperature to which the pears subjected. The changes in rheological properties due to variable storage temperature were described as a function of storage time. The result indicated that except the viscosity parameter of the Maxwell component of the four-element model, it was possible to describe the changes in rheological properties as a function of storage time, which are better physical parameters to estimate the quality of pears.
基金The National Natural Science Foundation of China,Grant/Award Number:41702326the Innovative Experts,Long-term Program of Jiangxi Province,Grant/Award Number:jxsq2018106049+1 种基金the Natural Science Foundation of Jiangxi Province,Grant/Award Number:20202ACB214006the Supported by Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology。
文摘In deep-earth engineering,the high earth temperature can significantly affect the rock's mechanical properties,especially when the rock is cooled during the construction process.Accordingly,whether the cooling speed affects the mechanical and physical properties of rocks is worth to be investigated.The present study explored the influence of the cooling rate on the physical and chemical properties of granite heated at 25–800°C.The mechanical and physical properties involved in this study included uniaxial compression strength,peak strain,modulus,P-wave velocity,mass and volume,the change of which could reflect the sensitivity of granite to the cooling rate.Acoustic emission(AE)monitoring,microscopic observation,and X-ray diffraction(XRD)are used to analyze the underlying damage mechanism.It is found that more AE signals and large-scale cracks are accounted for based on the b-value method when the specimens are cooled by water.Furthermore,the microscopic observation by polarized light microscopy indicates that the density,opening degree,and connectivity of the cracks under water cooling mode are higher than that under natural cooling mode.In addition,the XRD illustrates that there is no obvious change in mineral content and diffraction angle at different temperatures,which confirms that the change of mechanical properties is not related to the chemical properties.The present conclusion can provide a perspective to assess the damage caused by different cooling methods to hot rocks.
文摘The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber,glass fiber and multi-wall carbon nanotubes(MWCNTs)were manufactured. The physical and mechanical properties of the manufactured composites were measured according to standard methods. The properties of the manufactured hybrid nanocomposites were dramatically better than traditional composites. Also all the reinforced composites with carbon nanotube, glass fiber or bagasse fiber exhibited better properties rather than neat cement.The results indicated that bagasse fiber proved suitable for substitution of glass fiber as a reinforcing agent in the cement composites. The hybrid nanocomposite containing10 % glass fiber, 10 % bagasse fiber and 1.5 % MWCNTs was selected as the best compound.
文摘We present an analysis of structural, electronic, and mechanical properties of cubic titanium dioxide (TiO2) using an all electron orthogonalzed linear combinations of atomic orbitals (OLCAO) basis set under the framework of density functional theory (DFT). The structural property, especially the lattice constant a, and the electronic properties such as the band diagram and density of states (DOS) are studied and analyzed. The mechanical properties such as bulk moduli, shear moduli, Young's Moduli, and Poison's ratio are also investigated thoroughly. The calculations are carried out on shear moduli and anisotropy factor for cubic TiO2. The Vickers hardness is also tested for fluorite and pyrite cubic-structured TiO2. Furthermore, the results are compared with the previous theoretical and experimental results. It is found that DFT- based simulation produces results which are approximation to experimental results, whereas the calculated elastic constants are better than the previous theoretical and experimental values.
文摘In two-phase TiAl alloys, the lamellar structures are of special interest and importance since they are so common and persistent. not only under as-cast conditions but also after thermal treatment. However. the lamellar structures are still poor in ductility,although they are beneficial for toughness and high temperature strength. This article will review the recent progress made in understanding the basic mechanical properties of the γ and α2 phases which comprise the two-phase alloys in Iamellar form, and discuss how an improved balance of strength and ductillty in the lamellar form may be achieved
文摘The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed.
文摘The AB-crosslinked polymers (i.e. ABCP) with polystyrene as chain A and vinyl group blocked prepolymers of polyurethanes (PU) as chain B were synthesized and studied. The results of dynamic mechanical spectrometry (DMS) show that the compatibility between the components A and B can be improved greatly through chemical crosslinking during the formation of ABCPs. This effect is especially pronounced when short chain prepolymers is chosen as one of the components. It is apparent that the degree of crosslinking between the two components plays a major role in determining their compatibility. Copolymerizafion of styrene with maleic anhydride in chain A can improve the compatibility and broaden the damping temperature range. Mechanical properties of the sythesized ABCPs were also studied.
文摘The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite at ambient temperature are a little higher than those of Dy-α-sialon.while the bending strength is maintained up to 1000℃ and about 2 times more than that of Dy-α-sialon at the same temperature. The fracture surfaces show that the grain size of the composite is smaller than that of Dy-α-sialon, and both Of them have predominately transgranular mode of fracture. It is believed that the decrease of the bending strength of Dy-α-sialon at elevated temperature is caused by the viscous flow of the grain boundary phase, while the addition of nanosize SiC particles effectively increases the viscosity of the grain boundary phase and therefore prevents the strength loss of Dy-α-sialon/nano-size SiC composites at elevated temperature