We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de...We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.展开更多
This paper is concerned with the critical exponent of the porous medium equation with convection and nonlinear boundary condition. It is shown that the coefficient of the lower order term is an important factor that d...This paper is concerned with the critical exponent of the porous medium equation with convection and nonlinear boundary condition. It is shown that the coefficient of the lower order term is an important factor that determines the critical exponent.展开更多
In this paper we study existence of solutions of a class of Cauchy problems for porous medium equations with strongly nonlinear sources or absorptions and convections when the initial trace is a Radon measure μ on RN.
In this paper we analyze the large time behavior of nonnegative solutions of the Cauchy problem of the porous medium equation with absorption ut - △um + yup = 0,where γ≥0,m〉 1and P〉m+2/N We will show that if γ...In this paper we analyze the large time behavior of nonnegative solutions of the Cauchy problem of the porous medium equation with absorption ut - △um + yup = 0,where γ≥0,m〉 1and P〉m+2/N We will show that if γ=0 and 0〈μ〈 2N/n(m-1)+2 or γ 〉 0 and 1/p-1 〈 μ 〈 2N/N(m-1)+2 then for any nonnegative function φ in a nonnegative countable subset F of the Schwartz space S(RN), there exists an initial-value u0 ∈ C(RN) with limx→∞ uo(x)= 0 such that φ is an w-limit point of the rescaled solutions tμ/2u(tβ, t), Where β = 2-μ(m-1)/4.展开更多
In this paper author consider the following problem Let u = u(x.t) be a continuous weak solution of the equation in RN ×(O,T] for some T >O.Then author conclude: corresponding to u there is a unique nonnegativ...In this paper author consider the following problem Let u = u(x.t) be a continuous weak solution of the equation in RN ×(O,T] for some T >O.Then author conclude: corresponding to u there is a unique nonnegative Borel measure v on RN which is the initial trace of u; there is the global inequality of Harnack type for u; the initial trace must belong to a certain growth class; consequently, by combining the results mentioned above a uniqueness conclusion is established.展开更多
This paper deals with a class of porous medium equation ut=△u^m+f(u)with homogeneous Dirichlet boundary conditions. The blow-up criteria is established by using the method of energy under the suitable condition on...This paper deals with a class of porous medium equation ut=△u^m+f(u)with homogeneous Dirichlet boundary conditions. The blow-up criteria is established by using the method of energy under the suitable condition on the function f(u).展开更多
We study the porous medium equation ut=(um). 0<x<∞, t>0 with a singular boundary condition (um) (0,t)=u-β(0,t). We prove finite time quenching for the solution at the boundary χ=0. We also establish the qu...We study the porous medium equation ut=(um). 0<x<∞, t>0 with a singular boundary condition (um) (0,t)=u-β(0,t). We prove finite time quenching for the solution at the boundary χ=0. We also establish the quenching rate and asymptotic behavior on the quenching point.展开更多
In this paper, we show the existence of the time periodic solutions to the porous medium equations of the formut= Δ (|u| m-1 u)+B(x,t,u)+f(x,t) in Ω×Rwith the Dirichlet boundary value condition, wher...In this paper, we show the existence of the time periodic solutions to the porous medium equations of the formut= Δ (|u| m-1 u)+B(x,t,u)+f(x,t) in Ω×Rwith the Dirichlet boundary value condition, where m>1, Ω is a bounded domain in R N with smooth boundary Ω , the continuous function f and the Hlder continuous function B(x,t,u) are periodic in t with period ω and the nonlinear sources are assumed to be weaker, i.e., B(x,t,u) u≤b 0|u| α+1 with constants b 0≥0 and 0≤α<m.展开更多
A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compa...A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained.展开更多
This article investigates the blow-up behaviors for a porous medium equation with a superlinear source and local linear boundary dissipation.Making use of the concavity method,we establish sufficient conditions to gua...This article investigates the blow-up behaviors for a porous medium equation with a superlinear source and local linear boundary dissipation.Making use of the concavity method,we establish sufficient conditions to guarantee the occurrence of the finite time blow-up phenomenon.Meanwhile,we show the existence of the finite time blow-up solutions for arbitrarily high initial energy.Finally,we derive the life span bounds(i.e.,the lower and upper bounds of the blow-up time).展开更多
The initial-boundary value problem of an anisotropic porous medium equation■is studied.Compared with the usual porous medium equation,there are two different characteristics in this equation.One lies in its anisotrop...The initial-boundary value problem of an anisotropic porous medium equation■is studied.Compared with the usual porous medium equation,there are two different characteristics in this equation.One lies in its anisotropic property,another one is that there is a nonnegative variable diffusion coefficient a(x,t)additionally.Since a(x,t)may be degenerate on the parabolic boundary∂Ω×(0,T),instead of the boundedness of the gradient|∇u|for the usual porous medium,we can only show that∇u∈L^(∞)(0,T;L^(2)_(loc)(Ω)).Based on this property,the partial boundary value conditions matching up with the anisotropic porous medium equation are discovered and two stability theorems of weak solutions can be proved naturally.展开更多
In this article,we first prove the existence and uniqueness of the solution to the stochastic generalized porous medium equation perturbed by Lévy process,and then show the exponential convergence of(pt)t≥0 to...In this article,we first prove the existence and uniqueness of the solution to the stochastic generalized porous medium equation perturbed by Lévy process,and then show the exponential convergence of(pt)t≥0 to equilibrium uniform on any bounded subset in H.展开更多
In this paper,we propose and study neural network-based methods for solutions of high-dimensional quadratic porous medium equation(QPME).Three variational formulations of this nonlinear PDE are presented:a strong form...In this paper,we propose and study neural network-based methods for solutions of high-dimensional quadratic porous medium equation(QPME).Three variational formulations of this nonlinear PDE are presented:a strong formulation and two weak formulations.For the strong formulation,the solution is directly parameterized with a neural network and optimized by minimizing the PDEresidual.It can be proved that the convergence of the optimization problem guarantees the convergence of the approximate solution in the L^(1)sense.Theweak formulations are derived following(Brenier in Examples of hidden convexity in nonlinear PDEs,2020)which characterizes the very weak solutions of QPME.Specifically speaking,the solutions are represented with intermediate functions who are parameterized with neural networks and are trained to optimize the weak formulations.Extensive numerical tests are further carried out to investigate the pros and cons of each formulation in low and high dimensions.This is an initial exploration made along the line of solving high-dimensional nonlinear PDEs with neural network-based methods,which we hope can provide some useful experience for future investigations.展开更多
This article deals with the global existence and blow-up of positive solution of a nonlinear diffusion equation with nonlocal source and nonlocal nonlinear boundary condition. We investigate the influence of the react...This article deals with the global existence and blow-up of positive solution of a nonlinear diffusion equation with nonlocal source and nonlocal nonlinear boundary condition. We investigate the influence of the reaction terms, the weight functions and the nonlinear terms in the boundary conditions on global existence and blow up for this equation. Moreover, we establish blow-up rate estimates under some appropriate hypotheses.展开更多
Let Ω be a bounded or unbounded domain in R~n. The initial-boundary value problem for the porous medium and plasma equation with singular terms is considered in this paper. Criteria for the appearance of quenching ph...Let Ω be a bounded or unbounded domain in R~n. The initial-boundary value problem for the porous medium and plasma equation with singular terms is considered in this paper. Criteria for the appearance of quenching phenomenon and the existence of global classical solution to the above problem are established. Also, the life span of the quenching solution is estimated or evaluated for some domains.展开更多
Starting from the widespread phenomena of porous bottoms in the near shore region, considering fully the diversity of bottom topography and wave number variation, and including the effect of evanescent modes, a genera...Starting from the widespread phenomena of porous bottoms in the near shore region, considering fully the diversity of bottom topography and wave number variation, and including the effect of evanescent modes, a general linear wave theory for water waves propagating over uneven porous bottoms in the near shore region is established by use of Green's second identity. This theory can be reduced to a number of the most typical mild-slope equations currently in use and provide a reliable research basis for follow-up development of nonlinear water wave theory involving porous bottoms.展开更多
The nonlinear stability of thermal convection in a layer of an Oldroyd-B fluid-saturated Darcy porous medium with anisotropic permeability and thermal diffu- sivity is investigated with the perturbation method. A modi...The nonlinear stability of thermal convection in a layer of an Oldroyd-B fluid-saturated Darcy porous medium with anisotropic permeability and thermal diffu- sivity is investigated with the perturbation method. A modified Darcy-Oldroyd model is used to describe the flow in a layer of an anisotropic porous medium. The results of the linear instability theory are delineated. The thresholds for the stationary and oscillatory convection boundaries are established, and the crossover boundary between them is de- marcated by identifying a codimension-two point in the viscoelastic parameter plane. The stability of the stationary and oscillatory bifurcating solutions is analyzed by deriving the cubic Landau equations. It shows that these solutions always bifurcate supercritically. The heat transfer is estimated in terms of the Nusselt number for the stationary and oscillatory modes. The result shows that, when the ratio of the thermal to mechanical anisotropy parameters increases, the heat transfer decreases.展开更多
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider ...We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call "transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.展开更多
The problem of the creeping flow through a spherical droplet with a non-homogenous porous layer in a spherical container has been studied analytically.Darcy’s model for the flow inside the porous annular region and t...The problem of the creeping flow through a spherical droplet with a non-homogenous porous layer in a spherical container has been studied analytically.Darcy’s model for the flow inside the porous annular region and the Stokes equation for the flow inside the spherical cavity and container are used to analyze the flow.The drag force is exerted on the porous spherical particles enclosing a cavity,and the hydrodynamic permeability of the spherical droplet with a non-homogeneous porous layer is calculated.Emphasis is placed on the spatially varying permeability of a porous medium,which is not covered in all the previous works related to spherical containers.The variation of hydrodynamic permeability and the wall effect with respect to various flow parameters are presented and discussed graphically.The streamlines are presented to discuss the kinematics of the flow.Some previous results for hydrodynamic permeability and drag forces have been verified as special limiting cases.展开更多
Blow-up behaviour for the fourth-order quasilinear porous medium equation with source,ut=-(|u|^nu)xxxx+|u|^p-1u in R×R+,where n 〉 0, p 〉 1, is studied. Countable and finite families of similarity blow-u...Blow-up behaviour for the fourth-order quasilinear porous medium equation with source,ut=-(|u|^nu)xxxx+|u|^p-1u in R×R+,where n 〉 0, p 〉 1, is studied. Countable and finite families of similarity blow-up patterns of the form us(x,t)=(T-t)^-1/p-1f(y),where y=x/(T-t)^β' β=p-(n+1)/4(p-1),which blow-up as t → T^- 〈∞ are described. These solutions explain key features of regional (for p = n+1), single point (for p 〉 n+1), and global (for p ∈ (1,n+1))blowup. The concepts and various variational, bifurcation, and numerical approaches for revealing the structure and multiplicities of such blow-up patterns are presented.展开更多
文摘We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.
基金Foundation item: This work is partially supported by the grant for the project of the MOST of China, and partially supported by NNSF (10125107) of China.
文摘This paper is concerned with the critical exponent of the porous medium equation with convection and nonlinear boundary condition. It is shown that the coefficient of the lower order term is an important factor that determines the critical exponent.
文摘In this paper we study existence of solutions of a class of Cauchy problems for porous medium equations with strongly nonlinear sources or absorptions and convections when the initial trace is a Radon measure μ on RN.
基金supported by National Natural Science Foundation of Chinasupported by Specialized Research Fund for the Doctoral Program of Higher Educationsupported by Graduate Innovation Fund of Jilin University (20101045)
文摘In this paper we analyze the large time behavior of nonnegative solutions of the Cauchy problem of the porous medium equation with absorption ut - △um + yup = 0,where γ≥0,m〉 1and P〉m+2/N We will show that if γ=0 and 0〈μ〈 2N/n(m-1)+2 or γ 〉 0 and 1/p-1 〈 μ 〈 2N/N(m-1)+2 then for any nonnegative function φ in a nonnegative countable subset F of the Schwartz space S(RN), there exists an initial-value u0 ∈ C(RN) with limx→∞ uo(x)= 0 such that φ is an w-limit point of the rescaled solutions tμ/2u(tβ, t), Where β = 2-μ(m-1)/4.
文摘In this paper author consider the following problem Let u = u(x.t) be a continuous weak solution of the equation in RN ×(O,T] for some T >O.Then author conclude: corresponding to u there is a unique nonnegative Borel measure v on RN which is the initial trace of u; there is the global inequality of Harnack type for u; the initial trace must belong to a certain growth class; consequently, by combining the results mentioned above a uniqueness conclusion is established.
基金The project is supported by NSFC(11271154)Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Educationby the 985 Program of Jilin University
文摘This paper deals with a class of porous medium equation ut=△u^m+f(u)with homogeneous Dirichlet boundary conditions. The blow-up criteria is established by using the method of energy under the suitable condition on the function f(u).
文摘We study the porous medium equation ut=(um). 0<x<∞, t>0 with a singular boundary condition (um) (0,t)=u-β(0,t). We prove finite time quenching for the solution at the boundary χ=0. We also establish the quenching rate and asymptotic behavior on the quenching point.
文摘In this paper, we show the existence of the time periodic solutions to the porous medium equations of the formut= Δ (|u| m-1 u)+B(x,t,u)+f(x,t) in Ω×Rwith the Dirichlet boundary value condition, where m>1, Ω is a bounded domain in R N with smooth boundary Ω , the continuous function f and the Hlder continuous function B(x,t,u) are periodic in t with period ω and the nonlinear sources are assumed to be weaker, i.e., B(x,t,u) u≤b 0|u| α+1 with constants b 0≥0 and 0≤α<m.
基金Supported by the National Natural Science Foundation of China(11571361)China Scholarship Council
文摘A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained.
基金Supported by Scientific Research Fund of Hunan Provincial Education Department(23A0361)。
文摘This article investigates the blow-up behaviors for a porous medium equation with a superlinear source and local linear boundary dissipation.Making use of the concavity method,we establish sufficient conditions to guarantee the occurrence of the finite time blow-up phenomenon.Meanwhile,we show the existence of the finite time blow-up solutions for arbitrarily high initial energy.Finally,we derive the life span bounds(i.e.,the lower and upper bounds of the blow-up time).
基金supported by Natural Science Foundation of Fujian Province(No.2022J011242),China。
文摘The initial-boundary value problem of an anisotropic porous medium equation■is studied.Compared with the usual porous medium equation,there are two different characteristics in this equation.One lies in its anisotropic property,another one is that there is a nonnegative variable diffusion coefficient a(x,t)additionally.Since a(x,t)may be degenerate on the parabolic boundary∂Ω×(0,T),instead of the boundedness of the gradient|∇u|for the usual porous medium,we can only show that∇u∈L^(∞)(0,T;L^(2)_(loc)(Ω)).Based on this property,the partial boundary value conditions matching up with the anisotropic porous medium equation are discovered and two stability theorems of weak solutions can be proved naturally.
基金supported by the National Science Foundation of China(1067121290820302)the National Science Foundation of Hunan Province
文摘In this article,we first prove the existence and uniqueness of the solution to the stochastic generalized porous medium equation perturbed by Lévy process,and then show the exponential convergence of(pt)t≥0 to equilibrium uniform on any bounded subset in H.
基金supported in part by National Science Foundation via grant DMS-2012286by Department of Energy via grant DE-SC0019449.
文摘In this paper,we propose and study neural network-based methods for solutions of high-dimensional quadratic porous medium equation(QPME).Three variational formulations of this nonlinear PDE are presented:a strong formulation and two weak formulations.For the strong formulation,the solution is directly parameterized with a neural network and optimized by minimizing the PDEresidual.It can be proved that the convergence of the optimization problem guarantees the convergence of the approximate solution in the L^(1)sense.Theweak formulations are derived following(Brenier in Examples of hidden convexity in nonlinear PDEs,2020)which characterizes the very weak solutions of QPME.Specifically speaking,the solutions are represented with intermediate functions who are parameterized with neural networks and are trained to optimize the weak formulations.Extensive numerical tests are further carried out to investigate the pros and cons of each formulation in low and high dimensions.This is an initial exploration made along the line of solving high-dimensional nonlinear PDEs with neural network-based methods,which we hope can provide some useful experience for future investigations.
基金supported in part by NSF of China(11001189),supported by NSF of China(11371384)supported in part by NSF of Chongqing(cstc2013jcyjA0940)in part by NSF of Fuling(FLKJ,2013ABA2036)
文摘This article deals with the global existence and blow-up of positive solution of a nonlinear diffusion equation with nonlocal source and nonlocal nonlinear boundary condition. We investigate the influence of the reaction terms, the weight functions and the nonlinear terms in the boundary conditions on global existence and blow up for this equation. Moreover, we establish blow-up rate estimates under some appropriate hypotheses.
文摘Let Ω be a bounded or unbounded domain in R~n. The initial-boundary value problem for the porous medium and plasma equation with singular terms is considered in this paper. Criteria for the appearance of quenching phenomenon and the existence of global classical solution to the above problem are established. Also, the life span of the quenching solution is estimated or evaluated for some domains.
文摘Starting from the widespread phenomena of porous bottoms in the near shore region, considering fully the diversity of bottom topography and wave number variation, and including the effect of evanescent modes, a general linear wave theory for water waves propagating over uneven porous bottoms in the near shore region is established by use of Green's second identity. This theory can be reduced to a number of the most typical mild-slope equations currently in use and provide a reliable research basis for follow-up development of nonlinear water wave theory involving porous bottoms.
基金Project supported by the Innovation in Science Pursuit for the Inspired Research(INSPIRE)Program(No.DST/INSPIRE Fellowship/[IF 150253])
文摘The nonlinear stability of thermal convection in a layer of an Oldroyd-B fluid-saturated Darcy porous medium with anisotropic permeability and thermal diffu- sivity is investigated with the perturbation method. A modified Darcy-Oldroyd model is used to describe the flow in a layer of an anisotropic porous medium. The results of the linear instability theory are delineated. The thresholds for the stationary and oscillatory convection boundaries are established, and the crossover boundary between them is de- marcated by identifying a codimension-two point in the viscoelastic parameter plane. The stability of the stationary and oscillatory bifurcating solutions is analyzed by deriving the cubic Landau equations. It shows that these solutions always bifurcate supercritically. The heat transfer is estimated in terms of the Nusselt number for the stationary and oscillatory modes. The result shows that, when the ratio of the thermal to mechanical anisotropy parameters increases, the heat transfer decreases.
文摘We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call "transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.
基金Project supported by the Science and Engineering Research Board,New Delhi(No.SR/FTP/MS-47/2012)。
文摘The problem of the creeping flow through a spherical droplet with a non-homogenous porous layer in a spherical container has been studied analytically.Darcy’s model for the flow inside the porous annular region and the Stokes equation for the flow inside the spherical cavity and container are used to analyze the flow.The drag force is exerted on the porous spherical particles enclosing a cavity,and the hydrodynamic permeability of the spherical droplet with a non-homogeneous porous layer is calculated.Emphasis is placed on the spatially varying permeability of a porous medium,which is not covered in all the previous works related to spherical containers.The variation of hydrodynamic permeability and the wall effect with respect to various flow parameters are presented and discussed graphically.The streamlines are presented to discuss the kinematics of the flow.Some previous results for hydrodynamic permeability and drag forces have been verified as special limiting cases.
文摘Blow-up behaviour for the fourth-order quasilinear porous medium equation with source,ut=-(|u|^nu)xxxx+|u|^p-1u in R×R+,where n 〉 0, p 〉 1, is studied. Countable and finite families of similarity blow-up patterns of the form us(x,t)=(T-t)^-1/p-1f(y),where y=x/(T-t)^β' β=p-(n+1)/4(p-1),which blow-up as t → T^- 〈∞ are described. These solutions explain key features of regional (for p = n+1), single point (for p 〉 n+1), and global (for p ∈ (1,n+1))blowup. The concepts and various variational, bifurcation, and numerical approaches for revealing the structure and multiplicities of such blow-up patterns are presented.