In this work, the effect of zinc addition on the performance of aluminium-based sacrificial anode in seawater was investigated. The parameters used in assessing the performance of the cast anodes are anodic efficiency...In this work, the effect of zinc addition on the performance of aluminium-based sacrificial anode in seawater was investigated. The parameters used in assessing the performance of the cast anodes are anodic efficiency, protection efficiency and polarized potential. The percentages of Zn in the anodes were varied from 1 to 8%Zn. The alloys produced were tested as sacrificial anode for the protection of mild steel in seawater at room temperature. Current efficiency as high as 86.69% was achieved at 6%Zn in the alloys. The polarized potential obtained for the couples(steel/Al based alloys) are as given in the pourbaix diagrams with the steel lying within the immunity region/cathodic region ( S-0.5V SHE) and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week were measured. Protection efficiency values as high as 99.26% and 99.13% were achieved after the 7th and 8th with Al-6%Zn. The microstructure showed the intermetallic structures of β-phase which breakdown the alumina passive film and thus enhancing the anode efficiency.展开更多
文摘In this work, the effect of zinc addition on the performance of aluminium-based sacrificial anode in seawater was investigated. The parameters used in assessing the performance of the cast anodes are anodic efficiency, protection efficiency and polarized potential. The percentages of Zn in the anodes were varied from 1 to 8%Zn. The alloys produced were tested as sacrificial anode for the protection of mild steel in seawater at room temperature. Current efficiency as high as 86.69% was achieved at 6%Zn in the alloys. The polarized potential obtained for the couples(steel/Al based alloys) are as given in the pourbaix diagrams with the steel lying within the immunity region/cathodic region ( S-0.5V SHE) and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week were measured. Protection efficiency values as high as 99.26% and 99.13% were achieved after the 7th and 8th with Al-6%Zn. The microstructure showed the intermetallic structures of β-phase which breakdown the alumina passive film and thus enhancing the anode efficiency.