In this paper, the discrete mean-variance model is considered for portfolio selection under concave transaction costs. By using the Cholesky decomposition technique, the convariance matrix to obtain a separable mixed ...In this paper, the discrete mean-variance model is considered for portfolio selection under concave transaction costs. By using the Cholesky decomposition technique, the convariance matrix to obtain a separable mixed integer nonlinear optimization problem is decomposed. A brand-and-bound algorithm based on Lagrangian relaxation is then proposed. Computational results are reported for test problems with the data randomly generated and those from the US stock market.展开更多
Most real-world optimization problems are hierarchical involving non-cooperative objectives. Many of these problems can be formulated in terms of the first(upper level) objective function being minimized over the so...Most real-world optimization problems are hierarchical involving non-cooperative objectives. Many of these problems can be formulated in terms of the first(upper level) objective function being minimized over the solution set mapping of the second(lower level) optimization problem. Often the upper level decision maker is risk-averse. The resulting class of problem is named weak bilevel programming problem. This paper presents a new algorithm which embeds a penalty function method into a branch and bound algorithm to deal with a weak linear bilevel programming problem. An example illustrates the feasibility of the proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.70671064,70518001)
文摘In this paper, the discrete mean-variance model is considered for portfolio selection under concave transaction costs. By using the Cholesky decomposition technique, the convariance matrix to obtain a separable mixed integer nonlinear optimization problem is decomposed. A brand-and-bound algorithm based on Lagrangian relaxation is then proposed. Computational results are reported for test problems with the data randomly generated and those from the US stock market.
基金Supported by the National Natural Science Foundation of China(11501233)the Natural Science Research Project of Universities of Anhui Province(KJ2018A0390)
文摘Most real-world optimization problems are hierarchical involving non-cooperative objectives. Many of these problems can be formulated in terms of the first(upper level) objective function being minimized over the solution set mapping of the second(lower level) optimization problem. Often the upper level decision maker is risk-averse. The resulting class of problem is named weak bilevel programming problem. This paper presents a new algorithm which embeds a penalty function method into a branch and bound algorithm to deal with a weak linear bilevel programming problem. An example illustrates the feasibility of the proposed algorithm.