In order to constrain the crustal wave velocity structure in the southernTibetan crust and provide insight into the contribution of crustal composition, geothermal gradientand partial melting to the velocity structure...In order to constrain the crustal wave velocity structure in the southernTibetan crust and provide insight into the contribution of crustal composition, geothermal gradientand partial melting to the velocity structure, which is characterized by low average crustalvelocities and widespread presence of low-velocity zone(s), the authors model the crustal velocityand density as functions of depth corresponding to various heat flow values in light of velocitymeasurements at high temperature and high pressure. The modeled velocity and density are regarded ascomparison standards. The comparison of the standards with seismic observations in southern Tibetimplies that the predominantly felsic composition at high heat flow cannot explain the observedvelocity structure there. Hence, the authors are in favor of attributing low average crustalvelocities and low-velocity zone(s) observed in southern Tibet mainly to partial melting. Modelingbased on the experimental results suggests that a melting percentage of 7-12 could account for thelow-velocity zone(s).展开更多
基金supported by the Key Basic Research and Development Program of China(G19980407000)the National Natural Science Foundation of China(40072062)+1 种基金the Foundation of the Open Laboratory of Tectonophysics,China Seismological Bureauthe Post-Doctoral Grant of Ministry of Education,China.
文摘In order to constrain the crustal wave velocity structure in the southernTibetan crust and provide insight into the contribution of crustal composition, geothermal gradientand partial melting to the velocity structure, which is characterized by low average crustalvelocities and widespread presence of low-velocity zone(s), the authors model the crustal velocityand density as functions of depth corresponding to various heat flow values in light of velocitymeasurements at high temperature and high pressure. The modeled velocity and density are regarded ascomparison standards. The comparison of the standards with seismic observations in southern Tibetimplies that the predominantly felsic composition at high heat flow cannot explain the observedvelocity structure there. Hence, the authors are in favor of attributing low average crustalvelocities and low-velocity zone(s) observed in southern Tibet mainly to partial melting. Modelingbased on the experimental results suggests that a melting percentage of 7-12 could account for thelow-velocity zone(s).