We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the my...We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR△ZF2) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR△ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, IEf2 and calcineurin Aa, was increased in AR△ZF2 muscle, and the expression of all but p57kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.展开更多
Objectives To investigate the effects of testosterone enanthate (TE) on serum lip- ids and lipoproteins metabolism and the expression of androgen receptor (AR) , estrogen receptor beta ( ER - β) and platelet derived ...Objectives To investigate the effects of testosterone enanthate (TE) on serum lip- ids and lipoproteins metabolism and the expression of androgen receptor (AR) , estrogen receptor beta ( ER - β) and platelet derived growth factor beta ( PDGFR - β) in aortic vascular smooth muscle tissues (VSMTs). Methods Forty aged male rats were ran- domly divided into 4 groups, group A (placebo group) , group B (2. 5 mg/kg intramuscular injection of TE once a week ) , group C (5.0 mg/kg intramuscular injection of TE once a week ) , group D ( 10. 0 mg/kg intramus- cular injection of TE once a week). All animals were fed freely during 16 - week treatment periods. The ex- pression of AR ,ER - βand PDGFR - β were studied by Western bolt. Results Average serum LDL - C was lower in group D than that in group A ( p < 0. 01 ). Compared with the other groups, average serum TC was also lower in group D (p <0. 05). AR expression in aortic vascular smooth muscle tissues could be regulated by TE: 99.50 ±21.74, 125.38 ±28.68 and 101.98 ± 15.42 for TE concentrations at 2.5 mg/kg, 5.0 mg/kg and 10.0 mg/kg, respectively , the expression of ER - β could be regulated by TE: 92. 34 ± 18. 68, 47. 72 ± 18.12, 82.13 ±23.50, and the expression of PDGFR - β could be regulated as well by TE: 219.70 ±45. 59, 50.16 ±9. 72, 125.36 ±15. 74(Data for AR ,ER-β and PDGFR - β protein band intensity were expressed with x ± s, with control group taken as 100 ).Conclusions This study indicates that androgens have significant effects on serum lipids and lipoprotein metabolism. Testosterone enanthate at 5. 0 mg/kg can stimulate the expression of AR, but inhibite the expres- sion of PDGFR. Testosterone enanthate at the concen- trations of 5. 0 mg/kg and 10. 0 mg/kg can inhibite the expression of ER - β.展开更多
Several metabolic gene expressions are regulated in concert with muscle glycogen status. We hypothesized that intermittent exercise performed at high but sub-maximal intensities with long recovery periods would induce...Several metabolic gene expressions are regulated in concert with muscle glycogen status. We hypothesized that intermittent exercise performed at high but sub-maximal intensities with long recovery periods would induce a low glycogen state that would stimul- ate peroxisome proliferator-activated receptor-γ coa- ctivator-1α (PGC1-α) and pyruvate dehydrogenase kinase-4 (PDK-4) gene expression in muscle. Nine young human subjects performed two intermittent exercise sessions. One session consisted of 60 s cycling bouts at VO2max (IE100%), and the other session consisted of 75 s cycling bouts at 80% VO2max (IE80%). Twelve bouts of exercise were completed in both sessions with a 4 min rest between each bout. Muscle specimens were obtained at pre-exercise and immediately, 1.5 h and 3 h post-exercise. Muscle gly- cogen was significantly decreased after both sessions (IE100%, 94.1 ± 5.8 to 38.7 ± 5.5 mmol/kg w.w.;IE80%, 94.6 ± 9.1 to 53.3 ± 4.8 mmol/kg w.w.;both P α and PDK- 4 mRNA expression were significantly increased after exercise in both IE100% and IE80% (PGC-1α: ~3.7 and ~2.9-fold, respectively;PDK-4: ~11.1 and ~3.5-fold, respectively;all P 100% than in IE80% (P a and PDK-4 mRNA expression, suggesting that increasing exercise intensity contributes to muscle glycogen depletion and PDK-4 mRNA expression in human skeletal muscle.展开更多
Serum testosterone does not correlate with androgen tissue activity, and it is critical to optimize tools to evaluate such activity in males. Ultrasound measurement of bulbocavernosus muscle (BCM) was used to assess...Serum testosterone does not correlate with androgen tissue activity, and it is critical to optimize tools to evaluate such activity in males. Ultrasound measurement of bulbocavernosus muscle (BCM) was used to assess the relationship between the number of CAG repeats (CAGn) in the androgen receptor (AR) and the BCM size; the changes in the number of CAGn over age were also evaluated. Transperineal ultrasound measurement of the BCM was also performed. AR CAGn were determined by high performance liquid chromatography, and morning hormone levels were determined using immunoassays. Forty-eight men had CAG repeat analysis. Twenty-five were 〈30 years of age, mean 23.7 years (s.d, = 3.24) and 23 were 〉45 years of age, mean 53years (s.d. = 5.58). The median CAGn was 21 (13-29). BCM area was greater when the number of CAGn were 〈18 as compared to the number of CAGn 〉24 (P= 0.04). There was a linear correlation between the number of CAGn and the BCM area R^2= 16% (P= 0.01). In the 45 to 65-years-old group, a much stronger negative correlation (R^2 = 29%, P= 0.01) was noticed. In the 19 to 29-years-old group, no such correlation was found (R2 = 4%, P = 0.36). In older men, the number of CAGn increased with age (R^2 = 32%, P= 0.01). The number of CAGn in the AR correlates with the area of the BCM. Ultrasound assessment of the BCM is an effective surrogate to evaluate end-organ activity of androgens. The number of CAGn may increase with age.展开更多
Androgens have potent anabolic effects on skeletal muscle and decline with age in parallel to losses in muscle mass and strength. This loss of muscle mass and function, known as sarcopenia, is the central event in dev...Androgens have potent anabolic effects on skeletal muscle and decline with age in parallel to losses in muscle mass and strength. This loss of muscle mass and function, known as sarcopenia, is the central event in development of frailty, the vulnerable health status that presages adverse outcomes and rapid functional decline in older adults. The potential role of falling androgen levels in the development of frailty and their utility as function promoting therapies in older men has therefore attracted considerable attention. This review summarizes current concepts and definitions in muscle ageing, sarcopenia and frailty, and evaluates recent developments in the study of androgens and frailty. Current evidence from observational and interventional studies strongly supports an effect of androgens on muscle mass in ageing men, but effects on muscle strength and particularly physical function have been less clear. Androgen treatment has been generally well-tolerated in studies of older men, but concerns remain over higher dose treatments and use in populations with high cardiovascular risk. The first trials of selective androgen receptor modulators (SARMs) suggest similar effects on muscle mass and function to traditional androgen therapies in older adults. Important future directions include the use of these agents in combination with exercise training to promote functional ability across different populations of older adults, as well as more focus on the relationships between concurrent changes in hormone levels, body composition and physical function in observational studies.展开更多
In the past,contraction-induced production of reactive oxygen species(ROS)has been implicated in oxidative stress to skeletal muscle.As research advances,clear evidence has revealed a more complete role of ROS under b...In the past,contraction-induced production of reactive oxygen species(ROS)has been implicated in oxidative stress to skeletal muscle.As research advances,clear evidence has revealed a more complete role of ROS under both physiologic and pathologic conditions.Central to the role of ROS is the redox signaling pathways that control exercise-induced major physiologic and cellular responses and adaptations,such as mitochondrial biogenesis,mitophagy,mitochondrial morphologic dynamics,antioxidant defense,and inflammation.The current review focuses on how muscle contraction and immobilization may activate or inhibit redox signalings and their impact on muscle mitochondrial homeostasis and physiologic implications.展开更多
In peripheral artery disease patients,the blood supply directed to the lower limbs is reduced.This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs.The painful perception is induced...In peripheral artery disease patients,the blood supply directed to the lower limbs is reduced.This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs.The painful perception is induced and exaggerate during walking,and is relieved by rest.This symptom is termed by intermittent claudication.The limb ischemia also amplifies autonomic responses during exercise.In the process of pain and autonomic responses originating exercising muscle,a number of receptors in afferent nerves sense ischemic changes and send signals to the central nervous system leading to autonomic responses.This review integrates recent study results in terms of perspectives including how nerve growth factor affects muscle sensory nerve receptors in peripheral artery disease and thereby alters responses of sympathetic nerve activity and blood pressure to active muscle.For the sensory nerve receptors,we emphasize the role played by transient receptor potential vanilloid type 1,purinergic P2X purinoceptor 3 and acid sensing ion channel subtype 3 in amplified sympathetic nerve activity responses in peripheral artery disease.展开更多
<abstract>Aim: To investigate the effect of androgen on the proliferation, differentiation and regression of canine prostatic stromal cells in vivo and human stromal cells in vitro. Methods: Twenty-two dogs, inc...<abstract>Aim: To investigate the effect of androgen on the proliferation, differentiation and regression of canine prostatic stromal cells in vivo and human stromal cells in vitro. Methods: Twenty-two dogs, including 15 normal prostate dogs and 7 prostatic hyperplasia dogs, had their serum concentration of testosterone and estrodiol determined by radioimmunoassay before and after castration. The expression of androgen receptor (AR) and estrogen receptor (ER) in the prostate were analysed by immunohistochemistry and semi-quantitative RT-PCR before and after castration. Light microscopy, transmission electron microscopy and TUNEL assay were carried out successively before and after castration to evaluate the prostatic histomorphology. In vitro serum-free cell cultures from human prostatic stroma were established and exposed to dihydrotestosterone (DHT). The proliferation of the cell culture was detected by MTT assay. The expression of TGFβ, bFGF, AR, and smooth muscle cell (SMC) specific proteins (myosin and/or smoothelin) were detected using immunohistochemistry and RT-PCR. The differentiation from fibroblasts to smooth muscle cells was deduced by measuring the expression of SMC specific proteins. Results: Before castration, the serum concentrations of testosterone and estrodiol were not statistically different between normal and hyperplasia groups. Following castration, the serum concentration of testosterone decreased rapidly in 2 days, and the concentration of estrodiol had no significant change compared with the pre-castration data. In the prostate, AR was presented in both the epithelial and stromal cells and the AR mRNA level was higher in hyperplasia than in normal prostate tissues (P<0.05). While ER predominantly existed in the prostate stromal cells and the ER mRNA had no difference between the hyperplasia and the normal group. Within the early phase of castration (<d7), the expression of AR was increased rapidly. Then it gradually dropped to a lower level than that of the pre-castration by the end of d90. The expression of ER remained unchanged in the whole course. The prostatic stromal cells, including SMCs and fibroblasts, diminished and underwent serial pathological changes of atrophy and apoptosis after castration. The atrophic cells were filled with huge intracellular lipofuscin. The expression of SMC myosin declined after castration, coincident with the increase in TGFβ mRNA level and decline in bFGF mRNA level. In vitro, DHT caused a weak increase in the proliferation and expression of SMC-specific proteins (P<0.05). However, DHT and bFGF together stimulated the proliferation of stromal cells significantly more than either agent alone (P<0.01). The combination of DHT and TGFβ greatly enhanced the expression of SMC-specific proteins (P<0.01) more strongly than either alone (P<0.01). Conclusions: The whole prostate gland is an androgen-sensitive organ with both the epithelium and stroma under the control of androgen. Androgen may direct the proliferation, differentiation and regression of stromal cells by regulating the expression of TGFβ, bFGF, AR and smooth muscle cell specific proteins.展开更多
背景:肌少症是一种衰老相关的退行性综合征,线粒体自噬和运动防治肌少症已被证明密切相关,但尚缺乏详细介绍其中具体的受体蛋白和信号通路在运动防治肌少症中作用的综述。目的:综述详细介绍线粒体自噬相关具体的受体蛋白和信号通路在运...背景:肌少症是一种衰老相关的退行性综合征,线粒体自噬和运动防治肌少症已被证明密切相关,但尚缺乏详细介绍其中具体的受体蛋白和信号通路在运动防治肌少症中作用的综述。目的:综述详细介绍线粒体自噬相关具体的受体蛋白和信号通路在运动防治肌少症中的作用。方法:在2023-02-01/04-01之间进行了文献检索,检索文献时限从各数据库建库至2023年4月,数据库包括Web of Science、PubMed、中国知网、万方和维普。涵盖了“肌少症,衰老,老年,线粒体,线粒体功能,蛋白,通路”等关键词,严格按照纳入和排除标准进行筛选,最终纳入文献76篇进行综述分析。结果与结论:①肌少症是随着年龄增长肌肉质量和功能下降的疾病,其发生机制涉及神经肌肉功能下降、慢性炎症、酸碱失衡和线粒体功能障碍等。②线粒体自噬是细胞清除受损线粒体的重要过程,其中相关受体蛋白以及信号通路参与线粒体自噬的调控,运动可以通过调节这些受体蛋白和信号通路的活性,促进线粒体自噬的发生,对防治肌少症具有重要作用。③运动通过调控多个通路来促进线粒体自噬,包括上调AMPK、磷酸化ULK1、降低线粒体能量、增加与AMBRA1相关蛋白的表达、调控PINK1/Parkin通路等,从而改善肌少症引发的线粒体功能障碍;此外,运动还能激活mTOR通路促进肌肉生长和增加对葡萄糖的摄取,预防和治疗肌少症。④未来需要进一步深入研究运动防治肌少症中线粒体自噬相关受体蛋白和信号通路的具体作用机制和调控途径,开展更多的人体临床研究,以推动该领域的进一步发展。展开更多
文摘We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR△ZF2) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR△ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, IEf2 and calcineurin Aa, was increased in AR△ZF2 muscle, and the expression of all but p57kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.
文摘Objectives To investigate the effects of testosterone enanthate (TE) on serum lip- ids and lipoproteins metabolism and the expression of androgen receptor (AR) , estrogen receptor beta ( ER - β) and platelet derived growth factor beta ( PDGFR - β) in aortic vascular smooth muscle tissues (VSMTs). Methods Forty aged male rats were ran- domly divided into 4 groups, group A (placebo group) , group B (2. 5 mg/kg intramuscular injection of TE once a week ) , group C (5.0 mg/kg intramuscular injection of TE once a week ) , group D ( 10. 0 mg/kg intramus- cular injection of TE once a week). All animals were fed freely during 16 - week treatment periods. The ex- pression of AR ,ER - βand PDGFR - β were studied by Western bolt. Results Average serum LDL - C was lower in group D than that in group A ( p < 0. 01 ). Compared with the other groups, average serum TC was also lower in group D (p <0. 05). AR expression in aortic vascular smooth muscle tissues could be regulated by TE: 99.50 ±21.74, 125.38 ±28.68 and 101.98 ± 15.42 for TE concentrations at 2.5 mg/kg, 5.0 mg/kg and 10.0 mg/kg, respectively , the expression of ER - β could be regulated by TE: 92. 34 ± 18. 68, 47. 72 ± 18.12, 82.13 ±23.50, and the expression of PDGFR - β could be regulated as well by TE: 219.70 ±45. 59, 50.16 ±9. 72, 125.36 ±15. 74(Data for AR ,ER-β and PDGFR - β protein band intensity were expressed with x ± s, with control group taken as 100 ).Conclusions This study indicates that androgens have significant effects on serum lipids and lipoprotein metabolism. Testosterone enanthate at 5. 0 mg/kg can stimulate the expression of AR, but inhibite the expres- sion of PDGFR. Testosterone enanthate at the concen- trations of 5. 0 mg/kg and 10. 0 mg/kg can inhibite the expression of ER - β.
文摘Several metabolic gene expressions are regulated in concert with muscle glycogen status. We hypothesized that intermittent exercise performed at high but sub-maximal intensities with long recovery periods would induce a low glycogen state that would stimul- ate peroxisome proliferator-activated receptor-γ coa- ctivator-1α (PGC1-α) and pyruvate dehydrogenase kinase-4 (PDK-4) gene expression in muscle. Nine young human subjects performed two intermittent exercise sessions. One session consisted of 60 s cycling bouts at VO2max (IE100%), and the other session consisted of 75 s cycling bouts at 80% VO2max (IE80%). Twelve bouts of exercise were completed in both sessions with a 4 min rest between each bout. Muscle specimens were obtained at pre-exercise and immediately, 1.5 h and 3 h post-exercise. Muscle gly- cogen was significantly decreased after both sessions (IE100%, 94.1 ± 5.8 to 38.7 ± 5.5 mmol/kg w.w.;IE80%, 94.6 ± 9.1 to 53.3 ± 4.8 mmol/kg w.w.;both P α and PDK- 4 mRNA expression were significantly increased after exercise in both IE100% and IE80% (PGC-1α: ~3.7 and ~2.9-fold, respectively;PDK-4: ~11.1 and ~3.5-fold, respectively;all P 100% than in IE80% (P a and PDK-4 mRNA expression, suggesting that increasing exercise intensity contributes to muscle glycogen depletion and PDK-4 mRNA expression in human skeletal muscle.
文摘Serum testosterone does not correlate with androgen tissue activity, and it is critical to optimize tools to evaluate such activity in males. Ultrasound measurement of bulbocavernosus muscle (BCM) was used to assess the relationship between the number of CAG repeats (CAGn) in the androgen receptor (AR) and the BCM size; the changes in the number of CAGn over age were also evaluated. Transperineal ultrasound measurement of the BCM was also performed. AR CAGn were determined by high performance liquid chromatography, and morning hormone levels were determined using immunoassays. Forty-eight men had CAG repeat analysis. Twenty-five were 〈30 years of age, mean 23.7 years (s.d, = 3.24) and 23 were 〉45 years of age, mean 53years (s.d. = 5.58). The median CAGn was 21 (13-29). BCM area was greater when the number of CAGn were 〈18 as compared to the number of CAGn 〉24 (P= 0.04). There was a linear correlation between the number of CAGn and the BCM area R^2= 16% (P= 0.01). In the 45 to 65-years-old group, a much stronger negative correlation (R^2 = 29%, P= 0.01) was noticed. In the 19 to 29-years-old group, no such correlation was found (R2 = 4%, P = 0.36). In older men, the number of CAGn increased with age (R^2 = 32%, P= 0.01). The number of CAGn in the AR correlates with the area of the BCM. Ultrasound assessment of the BCM is an effective surrogate to evaluate end-organ activity of androgens. The number of CAGn may increase with age.
文摘Androgens have potent anabolic effects on skeletal muscle and decline with age in parallel to losses in muscle mass and strength. This loss of muscle mass and function, known as sarcopenia, is the central event in development of frailty, the vulnerable health status that presages adverse outcomes and rapid functional decline in older adults. The potential role of falling androgen levels in the development of frailty and their utility as function promoting therapies in older men has therefore attracted considerable attention. This review summarizes current concepts and definitions in muscle ageing, sarcopenia and frailty, and evaluates recent developments in the study of androgens and frailty. Current evidence from observational and interventional studies strongly supports an effect of androgens on muscle mass in ageing men, but effects on muscle strength and particularly physical function have been less clear. Androgen treatment has been generally well-tolerated in studies of older men, but concerns remain over higher dose treatments and use in populations with high cardiovascular risk. The first trials of selective androgen receptor modulators (SARMs) suggest similar effects on muscle mass and function to traditional androgen therapies in older adults. Important future directions include the use of these agents in combination with exercise training to promote functional ability across different populations of older adults, as well as more focus on the relationships between concurrent changes in hormone levels, body composition and physical function in observational studies.
文摘In the past,contraction-induced production of reactive oxygen species(ROS)has been implicated in oxidative stress to skeletal muscle.As research advances,clear evidence has revealed a more complete role of ROS under both physiologic and pathologic conditions.Central to the role of ROS is the redox signaling pathways that control exercise-induced major physiologic and cellular responses and adaptations,such as mitochondrial biogenesis,mitophagy,mitochondrial morphologic dynamics,antioxidant defense,and inflammation.The current review focuses on how muscle contraction and immobilization may activate or inhibit redox signalings and their impact on muscle mitochondrial homeostasis and physiologic implications.
基金This work was supported by the National Institutes of Health,No.NIH P01 HL134609 and R01 HL141198(to JL).
文摘In peripheral artery disease patients,the blood supply directed to the lower limbs is reduced.This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs.The painful perception is induced and exaggerate during walking,and is relieved by rest.This symptom is termed by intermittent claudication.The limb ischemia also amplifies autonomic responses during exercise.In the process of pain and autonomic responses originating exercising muscle,a number of receptors in afferent nerves sense ischemic changes and send signals to the central nervous system leading to autonomic responses.This review integrates recent study results in terms of perspectives including how nerve growth factor affects muscle sensory nerve receptors in peripheral artery disease and thereby alters responses of sympathetic nerve activity and blood pressure to active muscle.For the sensory nerve receptors,we emphasize the role played by transient receptor potential vanilloid type 1,purinergic P2X purinoceptor 3 and acid sensing ion channel subtype 3 in amplified sympathetic nerve activity responses in peripheral artery disease.
文摘<abstract>Aim: To investigate the effect of androgen on the proliferation, differentiation and regression of canine prostatic stromal cells in vivo and human stromal cells in vitro. Methods: Twenty-two dogs, including 15 normal prostate dogs and 7 prostatic hyperplasia dogs, had their serum concentration of testosterone and estrodiol determined by radioimmunoassay before and after castration. The expression of androgen receptor (AR) and estrogen receptor (ER) in the prostate were analysed by immunohistochemistry and semi-quantitative RT-PCR before and after castration. Light microscopy, transmission electron microscopy and TUNEL assay were carried out successively before and after castration to evaluate the prostatic histomorphology. In vitro serum-free cell cultures from human prostatic stroma were established and exposed to dihydrotestosterone (DHT). The proliferation of the cell culture was detected by MTT assay. The expression of TGFβ, bFGF, AR, and smooth muscle cell (SMC) specific proteins (myosin and/or smoothelin) were detected using immunohistochemistry and RT-PCR. The differentiation from fibroblasts to smooth muscle cells was deduced by measuring the expression of SMC specific proteins. Results: Before castration, the serum concentrations of testosterone and estrodiol were not statistically different between normal and hyperplasia groups. Following castration, the serum concentration of testosterone decreased rapidly in 2 days, and the concentration of estrodiol had no significant change compared with the pre-castration data. In the prostate, AR was presented in both the epithelial and stromal cells and the AR mRNA level was higher in hyperplasia than in normal prostate tissues (P<0.05). While ER predominantly existed in the prostate stromal cells and the ER mRNA had no difference between the hyperplasia and the normal group. Within the early phase of castration (<d7), the expression of AR was increased rapidly. Then it gradually dropped to a lower level than that of the pre-castration by the end of d90. The expression of ER remained unchanged in the whole course. The prostatic stromal cells, including SMCs and fibroblasts, diminished and underwent serial pathological changes of atrophy and apoptosis after castration. The atrophic cells were filled with huge intracellular lipofuscin. The expression of SMC myosin declined after castration, coincident with the increase in TGFβ mRNA level and decline in bFGF mRNA level. In vitro, DHT caused a weak increase in the proliferation and expression of SMC-specific proteins (P<0.05). However, DHT and bFGF together stimulated the proliferation of stromal cells significantly more than either agent alone (P<0.01). The combination of DHT and TGFβ greatly enhanced the expression of SMC-specific proteins (P<0.01) more strongly than either alone (P<0.01). Conclusions: The whole prostate gland is an androgen-sensitive organ with both the epithelium and stroma under the control of androgen. Androgen may direct the proliferation, differentiation and regression of stromal cells by regulating the expression of TGFβ, bFGF, AR and smooth muscle cell specific proteins.
文摘背景:肌少症是一种衰老相关的退行性综合征,线粒体自噬和运动防治肌少症已被证明密切相关,但尚缺乏详细介绍其中具体的受体蛋白和信号通路在运动防治肌少症中作用的综述。目的:综述详细介绍线粒体自噬相关具体的受体蛋白和信号通路在运动防治肌少症中的作用。方法:在2023-02-01/04-01之间进行了文献检索,检索文献时限从各数据库建库至2023年4月,数据库包括Web of Science、PubMed、中国知网、万方和维普。涵盖了“肌少症,衰老,老年,线粒体,线粒体功能,蛋白,通路”等关键词,严格按照纳入和排除标准进行筛选,最终纳入文献76篇进行综述分析。结果与结论:①肌少症是随着年龄增长肌肉质量和功能下降的疾病,其发生机制涉及神经肌肉功能下降、慢性炎症、酸碱失衡和线粒体功能障碍等。②线粒体自噬是细胞清除受损线粒体的重要过程,其中相关受体蛋白以及信号通路参与线粒体自噬的调控,运动可以通过调节这些受体蛋白和信号通路的活性,促进线粒体自噬的发生,对防治肌少症具有重要作用。③运动通过调控多个通路来促进线粒体自噬,包括上调AMPK、磷酸化ULK1、降低线粒体能量、增加与AMBRA1相关蛋白的表达、调控PINK1/Parkin通路等,从而改善肌少症引发的线粒体功能障碍;此外,运动还能激活mTOR通路促进肌肉生长和增加对葡萄糖的摄取,预防和治疗肌少症。④未来需要进一步深入研究运动防治肌少症中线粒体自噬相关受体蛋白和信号通路的具体作用机制和调控途径,开展更多的人体临床研究,以推动该领域的进一步发展。