In vitro androgenesis is an important component of plant biotechnology when the pollen grains are forced to switch from their normal pollen developmental pathway towards an embryogenic route. Haploid and doubled haplo...In vitro androgenesis is an important component of plant biotechnology when the pollen grains are forced to switch from their normal pollen developmental pathway towards an embryogenic route. Haploid and doubled haploid produced through androgenesis have long been recognized as a valuable tool in plant breeding as it can shorten the breeding cycle, fix agronomic characters in homozygous state and enhance the selection efficiency of useful recessive agronomic traits. Recently, doubled haploids have been largely recognized as an important component of crop improvement through genome mapping, quantitative trait locus analysis, and genetic mutation, and as targets for genetic transformation programs. Thus, this review is focused mainly on various facets of doubled haploid in the chief staple food crop rice and sights its recent applications in plant breeding, genetics and genomics.展开更多
Aim:To study the detrimental effects of cyclophosphamide on the testicular androgenic and gametogenic activities through endocrine inhibition and/or induction of oxidative stress in male albino rats and to evaluate th...Aim:To study the detrimental effects of cyclophosphamide on the testicular androgenic and gametogenic activities through endocrine inhibition and/or induction of oxidative stress in male albino rats and to evaluate the protective effect of ascorbic acid.Methods:The testicular△^(5),3β-hydroxysteroid dehydrogenase(HSD),17β-HSD,peroxidase and catalase activities along with the levels of malondialdehyde(MDA)and conjugated dienes in testicular tissue were measured for the evaluation of testicular oxidative stress.The plasma testosterone(T)level was measured by immunoassay.Various germ cells at stageⅦof spermatogenic cycle were quantified from testicular stained sections.Results:Cyclophosphamide treatment results in a significant inhibition in the testicular△^(5),3β-HSD and 17β-HSD activities,a decrease in plasma T level and a diminution in the counts of various germ cells.Moreover,this treatment was also associated with a significant inhibition of the peroxidase and catalase activities along with high levels of MDA and conjugated dienes in the testis.All these changes were reversed by ascorbic acid co-administration.Conclusion:Cyclophosphamide treatment at the dosage used caused testicular gametogenic and androgenic disorders as well as induced testicular oxidative stress that can be reversed by ascorbic acid co-administration.展开更多
Most aspects of microspore culture protocol have the capacity to cause stress to microspores, hence, less stressful treatments might be required to avoid deleterious effects. In stressed plants, polyamines and trehalo...Most aspects of microspore culture protocol have the capacity to cause stress to microspores, hence, less stressful treatments might be required to avoid deleterious effects. In stressed plants, polyamines and trehalose can act as compatible solutes or osmoprotectants by stabilizing proteins and biological membranes. To improve green plant regeneration in wheat microspore culture, this study assessed the effects of polyamines (putrecine, spermidine, spermine) and trehalose on androgenic response namely embryogenesis, green plant regeneration and ploidy of green plants regenerated in three spring wheat genotypes. Microspores of the genotypes produced significant numbers of embryos and green plants among polyamine treatments but trehalose had no effect (P ≤ 0.05). Polyamine treatments for 30 min generally produced more green plants per 100 microspores than the 60 min treatments in all three genotypes. At least three out of twelve polyamine treatments in each genotype improved the production of double haploid plants and seed setting in regenerants. Wheat genotype, concentration and duration of polyamine treatment had significant impact on embryogenesis and regeneration of green plants in this study. The study also showed that polyamines could be used to accelerate cultivar development in wheat breeding.展开更多
Sorghum[Sorghum bicolor(L.)Moench]can benefit from accelerated breeding and release of improved varieties through doubled haploid technology.The technology has been used in speeding up the breeding of other major cere...Sorghum[Sorghum bicolor(L.)Moench]can benefit from accelerated breeding and release of improved varieties through doubled haploid technology.The technology has been used in speeding up the breeding of other major cereals such as wheat,maize and rice,for which generally widely applied optimised protocols exist.A reproducible protocol for the crop,that can overcome genotype dependency and other species-specific challenges such as phenolic exudation is however lacking.This study aimed at sorghum doubled haploids production thereby contributing to the development of an improved protocol.From the 28 hybrid genotypes,both F1 registered-and experimental hybrids involved,this study successfully produced haploids from five genotypes and subsequently,four confirmed doubled-haploid lines on W14mf medium or its modification with 1.0 gl^(-1)L-proline,1.0 gl^(-1)L-asparagine and 1.0 gl^(-1)KH_(2)PO_(4).Medium 190-2Cu was used for regeneration and rooting,which occurred successfully,if the calli were transferred on to it less than 7 days after induction,and temperature was maintained at 25°C under light condition.Genotype dependency was not wholly overcome;however,sorghum’s high tillering ability and abiotic stress tolerance were observed to contribute to attainment of haploid plantlets.Spontaneous diploids producing seeds at rates of upto 80.5%were obtained,therefore eliminating the need for colchicine duplication.展开更多
Androgenesis was the especial zoogamy that the germ plasma of offspring was from the agnate. In this study the eggs of Yellow catfish (Pelteobagrus fulvidraco) were irradiated by UV suspending in the synthetic ovari...Androgenesis was the especial zoogamy that the germ plasma of offspring was from the agnate. In this study the eggs of Yellow catfish (Pelteobagrus fulvidraco) were irradiated by UV suspending in the synthetic ovarian fluid (OF), and the total dosage of UV irradiation was 220 mJ·cm^-2. Diploid could be induced by heat shock (40℃, 2 min, 3 min) with different time period after fertilization (15-37 min). The result showed that heat shock with 2 min was better than 3 min; there were two apices of induction in 17-21 min and 27-31 min after fertilization. The highest hatching rate was 3.30% at 29 min after fertilization, and the difference between two apices of induction was unobvious.展开更多
Microspore culture of wheat generates completely homozygous (doubled haploid) plants in a single generation thereby reducing the time required for wheat variety development. Success of microspore culture in spring whe...Microspore culture of wheat generates completely homozygous (doubled haploid) plants in a single generation thereby reducing the time required for wheat variety development. Success of microspore culture in spring wheat is relatively higher than that in winter wheat. Cold mediated pretreatment was reported to improve response of microspore culture in wheat. The objective of the study was to determine and compare the influence of cold pretreatment on microspore culture in spring and winter wheat. Three spring (“Chris”, “Express”, and “Macon”) and three winter (“Anton”, “Antelope”, and “Camelot”) wheat cultivars were used. In cold pretreatment, excised anthers were incubated in solution B at 25°C-28°C for 4-5 days followed by cold treatment at 4°C for 5 days and were compared with the no-cold pretreatment at 25°C-28°C for 4-5 days. Isolated microspores were cultured in induction medium (MMS4) at 27°C-28°C for 25-30 days in the dark. Embryos (1-2 mm size) were transferred to regeneration medium (MMS5). Numbers of multicellular structures, transferable embryos and green plants were counted and data were used for analysis of variance using a generalized linear model. It was observed that cold pretreatment increased multicellular structures, transferable embryos and green plants in both spring and winter wheat. However, the degree of improvement was higher in spring wheat compared to winter wheat. The cultivars within spring and winter wheat responded differently. Development of embryos from pro-embryos was 4-5 folds lower in winter wheat than that in spring wheat, indicating requirement of a possibly different hormonal composition in induction medium for improving embryo induction in winter wheat. This report may provide future direction of research to improve microspore culture response in winter wheat.展开更多
Distant hybridization makes it possible to transfer the genome of one species to another, which results in changes in phenotypes and genotypes of the progenies. This study shows that distant hybridization or the combi...Distant hybridization makes it possible to transfer the genome of one species to another, which results in changes in phenotypes and genotypes of the progenies. This study shows that distant hybridization or the combination of this method with gynogenesis or androgenesis lead to different ploidy fishes with genetic variation, including fertile tetraploid hybrids, sterile triploid hybrids, fertile diploid hybrids, fertile diploid gynogenetic fish, and their derived progenies. The formations of the different ploidy fishes depend on the genetic relationship between the parents. In this study, several types of distant hybridization, including red crucian carp (Carassius auratus red var.) (2n=100, abbreviated as RCC) (♀)×common carp (Cyprinus carpio L.) (2n=100, abbreviated as CC) (♂), and RCC (2n=100) (♀)×blunt snout bream (Megalobrama amblycephala) (2n=48, abbreviated as BSB) (♂) are described. In the distant hybridization of RCC (♀)×CC (♂), bisexual fertile F3–F18 allotetraploid hybrids (4n=200, abbreviated as 4nAT) were formed. The diploid hybrid eggs and diploid sperm generated by the females and males of 4nAT developed into diploid gynogenetic hybrids and diploid androgenetic hybrids, respectively, by gynogenesis and androgenesis, without treatment for doubling the chromosome. Improved tetraploid hybrids and improved diploid fishes with genetic variation were derived from the gynogenetic hybrid line. The improved diploid fishes included the high-body RCC and high-body goldfish. The formation of the tetraploid hybrids was related to the occurrence of unreduced gametes generated from the diploid hybrids, which involved in premeiotic endoreduplication, endomitosis, or fusion of germ cells. The sterile triploid hybrids (3n=150) were produced on a large scale by crossing the males of tetraploid hybrids with females of diploid fish (2n=100). In another distant hybridization of RCC (♀)×BSB (♂), different ploidy fishes were obtained, including diploid bisexual fertile natural gynogenetic fish (2n=100), sterile triploid hybrids (3n=124), and bisexual fertile tetraploid hybrids (4n=148). Furthermore, two kinds of pentaploid hybrids (5n=172 and 5n=198) were formed. The biological characteristics and the mechanisms of formation of the different ploidy fish were compared and discussed at the cellular and molecular level. The results indicated distant hybridization or the combination of this method with gynogenesis or androgenesis affects the formation of different ploidy fish with genetic variation.展开更多
文摘In vitro androgenesis is an important component of plant biotechnology when the pollen grains are forced to switch from their normal pollen developmental pathway towards an embryogenic route. Haploid and doubled haploid produced through androgenesis have long been recognized as a valuable tool in plant breeding as it can shorten the breeding cycle, fix agronomic characters in homozygous state and enhance the selection efficiency of useful recessive agronomic traits. Recently, doubled haploids have been largely recognized as an important component of crop improvement through genome mapping, quantitative trait locus analysis, and genetic mutation, and as targets for genetic transformation programs. Thus, this review is focused mainly on various facets of doubled haploid in the chief staple food crop rice and sights its recent applications in plant breeding, genetics and genomics.
基金The authors gratefully acknowledge the financial assistance from the Major Research Project(Project No.F-3/50/99 dated 3l-3-99)provided by the University Grants Commission(UGC),New Delhi,India
文摘Aim:To study the detrimental effects of cyclophosphamide on the testicular androgenic and gametogenic activities through endocrine inhibition and/or induction of oxidative stress in male albino rats and to evaluate the protective effect of ascorbic acid.Methods:The testicular△^(5),3β-hydroxysteroid dehydrogenase(HSD),17β-HSD,peroxidase and catalase activities along with the levels of malondialdehyde(MDA)and conjugated dienes in testicular tissue were measured for the evaluation of testicular oxidative stress.The plasma testosterone(T)level was measured by immunoassay.Various germ cells at stageⅦof spermatogenic cycle were quantified from testicular stained sections.Results:Cyclophosphamide treatment results in a significant inhibition in the testicular△^(5),3β-HSD and 17β-HSD activities,a decrease in plasma T level and a diminution in the counts of various germ cells.Moreover,this treatment was also associated with a significant inhibition of the peroxidase and catalase activities along with high levels of MDA and conjugated dienes in the testis.All these changes were reversed by ascorbic acid co-administration.Conclusion:Cyclophosphamide treatment at the dosage used caused testicular gametogenic and androgenic disorders as well as induced testicular oxidative stress that can be reversed by ascorbic acid co-administration.
文摘Most aspects of microspore culture protocol have the capacity to cause stress to microspores, hence, less stressful treatments might be required to avoid deleterious effects. In stressed plants, polyamines and trehalose can act as compatible solutes or osmoprotectants by stabilizing proteins and biological membranes. To improve green plant regeneration in wheat microspore culture, this study assessed the effects of polyamines (putrecine, spermidine, spermine) and trehalose on androgenic response namely embryogenesis, green plant regeneration and ploidy of green plants regenerated in three spring wheat genotypes. Microspores of the genotypes produced significant numbers of embryos and green plants among polyamine treatments but trehalose had no effect (P ≤ 0.05). Polyamine treatments for 30 min generally produced more green plants per 100 microspores than the 60 min treatments in all three genotypes. At least three out of twelve polyamine treatments in each genotype improved the production of double haploid plants and seed setting in regenerants. Wheat genotype, concentration and duration of polyamine treatment had significant impact on embryogenesis and regeneration of green plants in this study. The study also showed that polyamines could be used to accelerate cultivar development in wheat breeding.
基金This work was supported through the Stipendium Hungaricum Scholarship to the first author,János Bolyai Research Scholarship of the Hungarian Academy of Sciences,as well as research grants(TUDFO/51757/2019-ITM and K_16-K119835).
文摘Sorghum[Sorghum bicolor(L.)Moench]can benefit from accelerated breeding and release of improved varieties through doubled haploid technology.The technology has been used in speeding up the breeding of other major cereals such as wheat,maize and rice,for which generally widely applied optimised protocols exist.A reproducible protocol for the crop,that can overcome genotype dependency and other species-specific challenges such as phenolic exudation is however lacking.This study aimed at sorghum doubled haploids production thereby contributing to the development of an improved protocol.From the 28 hybrid genotypes,both F1 registered-and experimental hybrids involved,this study successfully produced haploids from five genotypes and subsequently,four confirmed doubled-haploid lines on W14mf medium or its modification with 1.0 gl^(-1)L-proline,1.0 gl^(-1)L-asparagine and 1.0 gl^(-1)KH_(2)PO_(4).Medium 190-2Cu was used for regeneration and rooting,which occurred successfully,if the calli were transferred on to it less than 7 days after induction,and temperature was maintained at 25°C under light condition.Genotype dependency was not wholly overcome;however,sorghum’s high tillering ability and abiotic stress tolerance were observed to contribute to attainment of haploid plantlets.Spontaneous diploids producing seeds at rates of upto 80.5%were obtained,therefore eliminating the need for colchicine duplication.
基金Supported by Science Project of Heilongjiang Province(GC03B510)
文摘Androgenesis was the especial zoogamy that the germ plasma of offspring was from the agnate. In this study the eggs of Yellow catfish (Pelteobagrus fulvidraco) were irradiated by UV suspending in the synthetic ovarian fluid (OF), and the total dosage of UV irradiation was 220 mJ·cm^-2. Diploid could be induced by heat shock (40℃, 2 min, 3 min) with different time period after fertilization (15-37 min). The result showed that heat shock with 2 min was better than 3 min; there were two apices of induction in 17-21 min and 27-31 min after fertilization. The highest hatching rate was 3.30% at 29 min after fertilization, and the difference between two apices of induction was unobvious.
文摘Microspore culture of wheat generates completely homozygous (doubled haploid) plants in a single generation thereby reducing the time required for wheat variety development. Success of microspore culture in spring wheat is relatively higher than that in winter wheat. Cold mediated pretreatment was reported to improve response of microspore culture in wheat. The objective of the study was to determine and compare the influence of cold pretreatment on microspore culture in spring and winter wheat. Three spring (“Chris”, “Express”, and “Macon”) and three winter (“Anton”, “Antelope”, and “Camelot”) wheat cultivars were used. In cold pretreatment, excised anthers were incubated in solution B at 25°C-28°C for 4-5 days followed by cold treatment at 4°C for 5 days and were compared with the no-cold pretreatment at 25°C-28°C for 4-5 days. Isolated microspores were cultured in induction medium (MMS4) at 27°C-28°C for 25-30 days in the dark. Embryos (1-2 mm size) were transferred to regeneration medium (MMS5). Numbers of multicellular structures, transferable embryos and green plants were counted and data were used for analysis of variance using a generalized linear model. It was observed that cold pretreatment increased multicellular structures, transferable embryos and green plants in both spring and winter wheat. However, the degree of improvement was higher in spring wheat compared to winter wheat. The cultivars within spring and winter wheat responded differently. Development of embryos from pro-embryos was 4-5 folds lower in winter wheat than that in spring wheat, indicating requirement of a possibly different hormonal composition in induction medium for improving embryo induction in winter wheat. This report may provide future direction of research to improve microspore culture response in winter wheat.
基金supported by the National Natural Science Fund for Distin-guished Young Scholars (Grant No. 30725028)the National Natural Sci-ence Foundation of China (Grant No. 30930071)+1 种基金the State Key Basic Research and Development Program of China (Grant No. 2007CB109200)the Specially-appointed Professor for Lotus Scholars Program of Hunan Province (Grant No. 080648)
文摘Distant hybridization makes it possible to transfer the genome of one species to another, which results in changes in phenotypes and genotypes of the progenies. This study shows that distant hybridization or the combination of this method with gynogenesis or androgenesis lead to different ploidy fishes with genetic variation, including fertile tetraploid hybrids, sterile triploid hybrids, fertile diploid hybrids, fertile diploid gynogenetic fish, and their derived progenies. The formations of the different ploidy fishes depend on the genetic relationship between the parents. In this study, several types of distant hybridization, including red crucian carp (Carassius auratus red var.) (2n=100, abbreviated as RCC) (♀)×common carp (Cyprinus carpio L.) (2n=100, abbreviated as CC) (♂), and RCC (2n=100) (♀)×blunt snout bream (Megalobrama amblycephala) (2n=48, abbreviated as BSB) (♂) are described. In the distant hybridization of RCC (♀)×CC (♂), bisexual fertile F3–F18 allotetraploid hybrids (4n=200, abbreviated as 4nAT) were formed. The diploid hybrid eggs and diploid sperm generated by the females and males of 4nAT developed into diploid gynogenetic hybrids and diploid androgenetic hybrids, respectively, by gynogenesis and androgenesis, without treatment for doubling the chromosome. Improved tetraploid hybrids and improved diploid fishes with genetic variation were derived from the gynogenetic hybrid line. The improved diploid fishes included the high-body RCC and high-body goldfish. The formation of the tetraploid hybrids was related to the occurrence of unreduced gametes generated from the diploid hybrids, which involved in premeiotic endoreduplication, endomitosis, or fusion of germ cells. The sterile triploid hybrids (3n=150) were produced on a large scale by crossing the males of tetraploid hybrids with females of diploid fish (2n=100). In another distant hybridization of RCC (♀)×BSB (♂), different ploidy fishes were obtained, including diploid bisexual fertile natural gynogenetic fish (2n=100), sterile triploid hybrids (3n=124), and bisexual fertile tetraploid hybrids (4n=148). Furthermore, two kinds of pentaploid hybrids (5n=172 and 5n=198) were formed. The biological characteristics and the mechanisms of formation of the different ploidy fish were compared and discussed at the cellular and molecular level. The results indicated distant hybridization or the combination of this method with gynogenesis or androgenesis affects the formation of different ploidy fish with genetic variation.