Steroidal drugs have wide indications such as anti-inflammation, anti-tumor, endocrine regulation,fertility management. Phytosterol is the main starting materials for the industrial synthesis of steroid drugs. Microbi...Steroidal drugs have wide indications such as anti-inflammation, anti-tumor, endocrine regulation,fertility management. Phytosterol is the main starting materials for the industrial synthesis of steroid drugs. Microbial transformation of phytosterol is a simple and environmentally friendly process. Efficient microbial strains for industrial phytosterol transformation are critical for the commercial success. To this end, a 96-well plate based method was developed to discriminate the mixture of 4-androstene-3,17-dione, androsta-1,4-diene-3,17-dione, and bisnoraldehyde, with different ratio of the 3 components in the mixture, which mimics the sterol bioconversion products by using the Mycobacterium neoaurum. The M. neoaurum bioconversed broth test using phytosterol as substrate also found that the spectrum methodology can evaluate the relative content of different compounds. The method is practical, high throughput and can replace the conventional HPLC-based assay for rapid selection of desired microbial strains.展开更多
文摘Steroidal drugs have wide indications such as anti-inflammation, anti-tumor, endocrine regulation,fertility management. Phytosterol is the main starting materials for the industrial synthesis of steroid drugs. Microbial transformation of phytosterol is a simple and environmentally friendly process. Efficient microbial strains for industrial phytosterol transformation are critical for the commercial success. To this end, a 96-well plate based method was developed to discriminate the mixture of 4-androstene-3,17-dione, androsta-1,4-diene-3,17-dione, and bisnoraldehyde, with different ratio of the 3 components in the mixture, which mimics the sterol bioconversion products by using the Mycobacterium neoaurum. The M. neoaurum bioconversed broth test using phytosterol as substrate also found that the spectrum methodology can evaluate the relative content of different compounds. The method is practical, high throughput and can replace the conventional HPLC-based assay for rapid selection of desired microbial strains.