Since 1999, a large body of evidence from various animal models indicates a link between anesthesia exposure in early stage of life and subsequent neurodevelopmental impairments1namely, almost all commonly used intrav...Since 1999, a large body of evidence from various animal models indicates a link between anesthesia exposure in early stage of life and subsequent neurodevelopmental impairments1namely, almost all commonly used intravenous and inhalational anesthetics, including gamma- aminobutyric acid agonists and N-methyl-D-aspartate antagonists, can induce dose- and age-dependent neuronal apoptosis and death in vitro. Moreover, abundant data from nematodes to primate animals have shown a variety of anatomic and neurodevelopmental sequelae from anesthesia exposure in young animals.[2,3] In the rodents, the most prominent manifestations of anesthesia-induced developmental neurotoxicity (AIDN) are often observed at post-natal day 7 .展开更多
Children are being exposed to an increasingly greater variety of anesthetics with advances in pediatric and obstetric surgery. Recent animal and retrospective human data suggest that the general anes- thetics commonly...Children are being exposed to an increasingly greater variety of anesthetics with advances in pediatric and obstetric surgery. Recent animal and retrospective human data suggest that the general anes- thetics commonly used in pediatric medicine could he damaging to the developing brain when used at clinical concentrations. In viw~ primate and rodent models have shown that neonatal exposure to clinical concentrations of anesthetics causes neural apoptosis and long-term cognitive impairment. Many general anesthetics.展开更多
Developmental exposure to organophosphate insecticide is well known to induce neurobeha-vioral impairments, at late period. The present study aims to investigate the effects of chronic exposure to Malathion, from in u...Developmental exposure to organophosphate insecticide is well known to induce neurobeha-vioral impairments, at late period. The present study aims to investigate the effects of chronic exposure to Malathion, from in utero to young adult stage, on locomotor skills and anxiety like- behavior among wistar rat. Four groups of female rats, bred with one non-pesticide exposed male, are used. On gestational day 6, three groups receive daily, by intragastric gavage, 3 different doses of Malathion dissolved in corn oil (100, 200 and 300 mg/kg body weight). The control group receives the corn oil only. On postnatal day 21, weaned offsprings are submitted to the similar treatment until adult age. Spontaneous locomotor activity is evaluated using the Open-Field test (OF) and anxiety-like behavior is measured using both Open-Field (OF) test and Elevate Plus-Maze (EPM). Malathion at 300 mg/kg is toxic to pregnant dams, and pups are stillborns. In males, Malathionlevelat 100 and 200 mg/kg induced significant impairment of spontaneous locomotor activities, which is reflected by high decrease of number of squares crossed in OF. In contrast, no discernible changes are observed within females Malathion-treated-group. However, females exposed to both malathion levels develop further anxiety-like response, expressed by significant reductions of exploratory activities in OF and time spent in open arm of EPM. Neurochemistry assay shows that cerebellum and neocortex acetylcholinesterase (AChE) activity inhibition are significantly increased with neurobehavioral deficits in males, relative to females. Overall, neurobehavioral outcomes of current study reveal that developmental exposure to Malathion induces sex-selective effects with greater changes in females.展开更多
Most cognitive effects of Organophosphate Pesticides (OP) are induced after exposure to parathion, chlorpyrifos and diazinon, which the usage has been restricted because of overt signs of their toxicities. In this stu...Most cognitive effects of Organophosphate Pesticides (OP) are induced after exposure to parathion, chlorpyrifos and diazinon, which the usage has been restricted because of overt signs of their toxicities. In this study, we investigate whether developmental exposure to Malathion could impair spatial learning and recognition memory in male rats. Animals exposed by intragastric route, from in utero to young adult stage, to incremental doses of Malathion dissolved in corn oil;100, 200 and 300 mg/kg of body weight, and one control group are given corn oil. Then, cognitive and behaveioral abilities are assessed using Barnes maze and object recognition memory task. Malathion administration at 300 mg/kg is toxic to pregnant dams, and pups are stillborns. Rats exposed to 200 mg/kg make a significant working memory error, and require more time to find an escape box during the initial training phase of Barnes maze. However, fewer errors are made in rats exposed to 100 mg/kg. For reversal learning task, the high dose group shows great deficits in spatial strategy to locate the new position of the box. With respect to recognition task, both dose 100 and 200 mg/kg impair significant short-term (2 h after habituation phase) object recognition memory, but long-term (24 h after habituation phase) recognition memory is intact in high dose group. The current study also reveals that all treatments induce high significant neocortex acetylcholinesterase (AChE) activity inhibition, but 100 mg/kg dose is not sufficient to disrupt great hippocampal activity alteration. These results suggest that developmental exposure to Malathion, despite low toxicity described, may induce late-emerging spatial learning and recognition memorialterations. Moreover, Cortical and hippocampal area that support strongly these behaviors remain sensitive to incremental doses of Malathion.展开更多
Objective The aim of this study was to assess the effects of yttrium nitrate on neurobehaviora development in Sprague-Dawley rats. Methods Dams were orally exposed to 0, 5, 15, or 45 mg/kg daily of yttrium nitrate fro...Objective The aim of this study was to assess the effects of yttrium nitrate on neurobehaviora development in Sprague-Dawley rats. Methods Dams were orally exposed to 0, 5, 15, or 45 mg/kg daily of yttrium nitrate from gestation day (GD) 6 to postnatal day (PND) 21. Body weight and food consumption were monitored weekly. Neurobehavior was assessed by developmental landmarks and reflexes, motor activity, hot plate, Rota-rod and cognitive tests. Additionally, brain weights were measured on PND 21 and 70. Results No significant difference was noted among all groups for maternal body weight and food consumption. All yttrium-exposed offspring showed an increase in body weight on PND 21; however, no significant difference in body weight for exposed pups versus controls was observed 2 weeks or more after the yttrium solution was discontinued. The groups given 5 mg/kg daily decreased significantly in the duration of female forelime grip strength and ambulation on PND 13. There was no significant difference between yttrium-exposed offspring and controls with respect to other behavioral ontogeny parameters and postnatal behavioral test results. Conclusion Exposure of rats to yttrium nitrate in concentrations up to 45 mg/kg daily had no adverse effects on their neurobehavioral development.展开更多
Exposure to some toxic compounds causes structural and behavioral anomalies associated with the neurons in the later stage of life.Those toxic compounds are termed as a neurotoxicant,which can be a physical factor,a t...Exposure to some toxic compounds causes structural and behavioral anomalies associated with the neurons in the later stage of life.Those toxic compounds are termed as a neurotoxicant,which can be a physical factor,a toxin,an infection,radiation,or maybe a drug.The incongruities caused due to a neurotoxicant further depend on the toxicity of the compound.More importantly,the neurotoxicity of the compound is associated with the concentration and the time point of exposure.The neurodevelopmental defect appears depending on the toxicity of the compound.A neurodevelopmental defect may be associated with a delay in developmental time,defective growth,structural abnormality of many organs,including sensory organs,behavioral abnormalities,or death in the fetus stage.Numerous model organisms are employed to assess the effect of neurotoxicants.The current review summarizes several methods used to check the effect of neurotoxicant and their effect using the model organism Drosophila melanogaster.展开更多
There is little to no toxicity information regarding thousands of chemicals to which people are exposed daily.In fact,of the84,000 chemicals listed in the United States Toxic Substances Control Act Inventory,there is ...There is little to no toxicity information regarding thousands of chemicals to which people are exposed daily.In fact,of the84,000 chemicals listed in the United States Toxic Substances Control Act Inventory,there is limited information available on their effects on neural development(Betts,2010;US EPA,2015).展开更多
目的研究四溴双酚A(Tetrabromobisphenol A,TBBPA)对斑马鱼胚胎的发育毒性和神经毒性。方法采用斑马鱼胚胎模型,利用胚胎暴露实验分析剂量效应和畸形表观等发育毒性指标;利用胚胎自主运动、接触反应和仔鱼游泳运动,分析神经毒性指标。结...目的研究四溴双酚A(Tetrabromobisphenol A,TBBPA)对斑马鱼胚胎的发育毒性和神经毒性。方法采用斑马鱼胚胎模型,利用胚胎暴露实验分析剂量效应和畸形表观等发育毒性指标;利用胚胎自主运动、接触反应和仔鱼游泳运动,分析神经毒性指标。结果TBBPA对斑马鱼胚胎的发育具有中度毒性,在受精后48h(Hours Post Fertilization,hpf)的半数致死量(Concentration that led to 50%mortality,LC50)和半数致畸量(Concentration that led to 50%malformations,EC50)分别是7.9和4.7μmol.L-1,以及在120hpf的LC50和EC50分别是5.3和1.9μmol.L-1。发育毒性效应具体表现为(1)在48,60,72,96hpf均表现为低浓度促进孵化,高浓度抑制孵化;(2)引起胚胎发生尾部弯曲、未吸收卵黄囊、心包囊肿、卵黄囊水肿、游囊关闭等畸形现象;(3)胚胎畸形率和死亡率均具有剂量依赖效应,即与暴露浓度成正比。TBBPA对斑马鱼的神经毒性表现为(1)增加胚胎在19~26hpf的自主运动频率;(2)降低胚胎在27,36,48hpf时的接触反应能力;(3)降低胚胎在120hpf的行为运动速度。结论TBBPA对斑马鱼胚胎具有发育毒性和神经行为毒性。展开更多
文摘Since 1999, a large body of evidence from various animal models indicates a link between anesthesia exposure in early stage of life and subsequent neurodevelopmental impairments1namely, almost all commonly used intravenous and inhalational anesthetics, including gamma- aminobutyric acid agonists and N-methyl-D-aspartate antagonists, can induce dose- and age-dependent neuronal apoptosis and death in vitro. Moreover, abundant data from nematodes to primate animals have shown a variety of anatomic and neurodevelopmental sequelae from anesthesia exposure in young animals.[2,3] In the rodents, the most prominent manifestations of anesthesia-induced developmental neurotoxicity (AIDN) are often observed at post-natal day 7 .
基金supported by the Japan Society for the Promotion of Science,Tokyo,JapanGrant No.23890054 and 25861361
文摘Children are being exposed to an increasingly greater variety of anesthetics with advances in pediatric and obstetric surgery. Recent animal and retrospective human data suggest that the general anes- thetics commonly used in pediatric medicine could he damaging to the developing brain when used at clinical concentrations. In viw~ primate and rodent models have shown that neonatal exposure to clinical concentrations of anesthetics causes neural apoptosis and long-term cognitive impairment. Many general anesthetics.
文摘Developmental exposure to organophosphate insecticide is well known to induce neurobeha-vioral impairments, at late period. The present study aims to investigate the effects of chronic exposure to Malathion, from in utero to young adult stage, on locomotor skills and anxiety like- behavior among wistar rat. Four groups of female rats, bred with one non-pesticide exposed male, are used. On gestational day 6, three groups receive daily, by intragastric gavage, 3 different doses of Malathion dissolved in corn oil (100, 200 and 300 mg/kg body weight). The control group receives the corn oil only. On postnatal day 21, weaned offsprings are submitted to the similar treatment until adult age. Spontaneous locomotor activity is evaluated using the Open-Field test (OF) and anxiety-like behavior is measured using both Open-Field (OF) test and Elevate Plus-Maze (EPM). Malathion at 300 mg/kg is toxic to pregnant dams, and pups are stillborns. In males, Malathionlevelat 100 and 200 mg/kg induced significant impairment of spontaneous locomotor activities, which is reflected by high decrease of number of squares crossed in OF. In contrast, no discernible changes are observed within females Malathion-treated-group. However, females exposed to both malathion levels develop further anxiety-like response, expressed by significant reductions of exploratory activities in OF and time spent in open arm of EPM. Neurochemistry assay shows that cerebellum and neocortex acetylcholinesterase (AChE) activity inhibition are significantly increased with neurobehavioral deficits in males, relative to females. Overall, neurobehavioral outcomes of current study reveal that developmental exposure to Malathion induces sex-selective effects with greater changes in females.
文摘Most cognitive effects of Organophosphate Pesticides (OP) are induced after exposure to parathion, chlorpyrifos and diazinon, which the usage has been restricted because of overt signs of their toxicities. In this study, we investigate whether developmental exposure to Malathion could impair spatial learning and recognition memory in male rats. Animals exposed by intragastric route, from in utero to young adult stage, to incremental doses of Malathion dissolved in corn oil;100, 200 and 300 mg/kg of body weight, and one control group are given corn oil. Then, cognitive and behaveioral abilities are assessed using Barnes maze and object recognition memory task. Malathion administration at 300 mg/kg is toxic to pregnant dams, and pups are stillborns. Rats exposed to 200 mg/kg make a significant working memory error, and require more time to find an escape box during the initial training phase of Barnes maze. However, fewer errors are made in rats exposed to 100 mg/kg. For reversal learning task, the high dose group shows great deficits in spatial strategy to locate the new position of the box. With respect to recognition task, both dose 100 and 200 mg/kg impair significant short-term (2 h after habituation phase) object recognition memory, but long-term (24 h after habituation phase) recognition memory is intact in high dose group. The current study also reveals that all treatments induce high significant neocortex acetylcholinesterase (AChE) activity inhibition, but 100 mg/kg dose is not sufficient to disrupt great hippocampal activity alteration. These results suggest that developmental exposure to Malathion, despite low toxicity described, may induce late-emerging spatial learning and recognition memorialterations. Moreover, Cortical and hippocampal area that support strongly these behaviors remain sensitive to incremental doses of Malathion.
基金financially supported by the National Science and Technology Support Program(2012BAK01B00)
文摘Objective The aim of this study was to assess the effects of yttrium nitrate on neurobehaviora development in Sprague-Dawley rats. Methods Dams were orally exposed to 0, 5, 15, or 45 mg/kg daily of yttrium nitrate from gestation day (GD) 6 to postnatal day (PND) 21. Body weight and food consumption were monitored weekly. Neurobehavior was assessed by developmental landmarks and reflexes, motor activity, hot plate, Rota-rod and cognitive tests. Additionally, brain weights were measured on PND 21 and 70. Results No significant difference was noted among all groups for maternal body weight and food consumption. All yttrium-exposed offspring showed an increase in body weight on PND 21; however, no significant difference in body weight for exposed pups versus controls was observed 2 weeks or more after the yttrium solution was discontinued. The groups given 5 mg/kg daily decreased significantly in the duration of female forelime grip strength and ambulation on PND 13. There was no significant difference between yttrium-exposed offspring and controls with respect to other behavioral ontogeny parameters and postnatal behavioral test results. Conclusion Exposure of rats to yttrium nitrate in concentrations up to 45 mg/kg daily had no adverse effects on their neurobehavioral development.
基金MM Lab is supported by SERB/EMR/2017/003054,BT/PR21857/NNT/28/1238/2017Odisha DBT 3325/ST(BIO)-02/2017.
文摘Exposure to some toxic compounds causes structural and behavioral anomalies associated with the neurons in the later stage of life.Those toxic compounds are termed as a neurotoxicant,which can be a physical factor,a toxin,an infection,radiation,or maybe a drug.The incongruities caused due to a neurotoxicant further depend on the toxicity of the compound.More importantly,the neurotoxicity of the compound is associated with the concentration and the time point of exposure.The neurodevelopmental defect appears depending on the toxicity of the compound.A neurodevelopmental defect may be associated with a delay in developmental time,defective growth,structural abnormality of many organs,including sensory organs,behavioral abnormalities,or death in the fetus stage.Numerous model organisms are employed to assess the effect of neurotoxicants.The current review summarizes several methods used to check the effect of neurotoxicant and their effect using the model organism Drosophila melanogaster.
基金the Canada Research Chairs Program,the Canadian Institutes of Health Research,and the Natural Sciences and Engineering Research Council of Canada for their support
文摘There is little to no toxicity information regarding thousands of chemicals to which people are exposed daily.In fact,of the84,000 chemicals listed in the United States Toxic Substances Control Act Inventory,there is limited information available on their effects on neural development(Betts,2010;US EPA,2015).
文摘目的研究四溴双酚A(Tetrabromobisphenol A,TBBPA)对斑马鱼胚胎的发育毒性和神经毒性。方法采用斑马鱼胚胎模型,利用胚胎暴露实验分析剂量效应和畸形表观等发育毒性指标;利用胚胎自主运动、接触反应和仔鱼游泳运动,分析神经毒性指标。结果TBBPA对斑马鱼胚胎的发育具有中度毒性,在受精后48h(Hours Post Fertilization,hpf)的半数致死量(Concentration that led to 50%mortality,LC50)和半数致畸量(Concentration that led to 50%malformations,EC50)分别是7.9和4.7μmol.L-1,以及在120hpf的LC50和EC50分别是5.3和1.9μmol.L-1。发育毒性效应具体表现为(1)在48,60,72,96hpf均表现为低浓度促进孵化,高浓度抑制孵化;(2)引起胚胎发生尾部弯曲、未吸收卵黄囊、心包囊肿、卵黄囊水肿、游囊关闭等畸形现象;(3)胚胎畸形率和死亡率均具有剂量依赖效应,即与暴露浓度成正比。TBBPA对斑马鱼的神经毒性表现为(1)增加胚胎在19~26hpf的自主运动频率;(2)降低胚胎在27,36,48hpf时的接触反应能力;(3)降低胚胎在120hpf的行为运动速度。结论TBBPA对斑马鱼胚胎具有发育毒性和神经行为毒性。