Angiotensin I converting enzyme (ACE) plays an important physiological role in the regulation of hypertension. In this study, we applied virtual screening to discover a novel angiotensin I converting enzyme inhibito...Angiotensin I converting enzyme (ACE) plays an important physiological role in the regulation of hypertension. In this study, we applied virtual screening to discover a novel angiotensin I converting enzyme inhibitory peptides from milk casein. One potential hit was identified based on docking scores, subsequently confirmed by activity studies in vitro (IC50=20.85 μmol L-1). The proposed peptide in this study contains a unique sequence, Lys-Val-Leu-Ile-Leu-Ala. Moreover, we performed the docking studies to understand the binding mode between the enzyme and peptide hit.展开更多
Drying technology of angiotensin converting enzyme (ACE) inhibitory peptides derived from bovine casein was investigated. No significance was observed on ACE inhibitory activity of products prepared by spay drying a...Drying technology of angiotensin converting enzyme (ACE) inhibitory peptides derived from bovine casein was investigated. No significance was observed on ACE inhibitory activity of products prepared by spay drying and freeze drying (P〉0.05). Spay drying was the best drying process for practical industry production. The inlet temperature ranged from 140℃ to 160℃ and the exit temperature ranged from 70 ℃ to 90 ℃ during the spay drying process. Under the optimal conditions, scale-up of angiotensin converted enzyme inhibitory peptide from 1 L to 10 L and the experiment was successively conducted. Peptide yield was 29% and half inhibitory concentration (IC50) was 0.53 g. L^-1.展开更多
The aim of this work is to discover the inhibitory mechanism of tea peptides and to analyse the affinities between the peptides and the angiotensin-converting enzyme(ACE)as well as the stability of the complexes using...The aim of this work is to discover the inhibitory mechanism of tea peptides and to analyse the affinities between the peptides and the angiotensin-converting enzyme(ACE)as well as the stability of the complexes using in vitro and in silico methods.Four peptide sequences identified from tea,namely peptides I,II,III,and IV,were used to examine ACE inhibition and kinetics.The half maximal inhibitory concentration(IC_(50))values of the four peptides were(210.03±18.29),(178.91±5.18),(196.31±2.87),and(121.11±3.38)μmol/L,respectively.The results of Lineweaver-Burk plots showed that peptides I,II,and IV inhibited ACE activity in an uncompetitive manner,which requires the presence of substrate.Peptide III inhibited ACE in a noncompetitive manner,for which the presence of substrate is not necessary.The docking simulations showed that the four peptides did not bind to the active sites of ACE,indicating that the four peptides are allosteric inhibitors.The binding free energies calculated from molecular dynamic(MD)simulation were-72.47,-42.20,-52.10,and-67.14 kcal/mol(1 kcal=4.186 kJ),r espectively.The lower IC_(50)value of peptide IV may be attributed to its stability when docking with ACE and changes in the flexibility and unfolding of ACE.These four bioactive peptides with ACE inhibitory ability can be incorporated into novel functional ingredients of black tea.展开更多
Chemical feature based pharmacophore models were generated for an angiotensin converting enzyme(ACE) inhibitory peptide using the Discovery Studio 2.0 pharmacophore modeling approach. The pharmacophore hypothesis sele...Chemical feature based pharmacophore models were generated for an angiotensin converting enzyme(ACE) inhibitory peptide using the Discovery Studio 2.0 pharmacophore modeling approach. The pharmacophore hypothesis selected has five features(one negative ionizable region,one hydrogen bond donor,one hydrogen bond acceptor and two hydrophobic functional groups). Additionally,ACE inhibitory hexapeptide previously obtained from silkworm pupae protein was optimized to target the ACE based on the selected pharmacophore. The results suggest that tri-peptide(thr-val-phe) may be structural determinant of ACE activity. Docking studies further provided confidence for the validity of the selected pharmacophore model to perform structure optimization of the ACE inhibitory peptide.展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program, 2008AA10Z313)the Foundation for Sciand Tech Research Project of Zhejiang Province, China(2006C12096)Natural Science Foundation of Zhejiang Province, China (Y3090026)
文摘Angiotensin I converting enzyme (ACE) plays an important physiological role in the regulation of hypertension. In this study, we applied virtual screening to discover a novel angiotensin I converting enzyme inhibitory peptides from milk casein. One potential hit was identified based on docking scores, subsequently confirmed by activity studies in vitro (IC50=20.85 μmol L-1). The proposed peptide in this study contains a unique sequence, Lys-Val-Leu-Ile-Leu-Ala. Moreover, we performed the docking studies to understand the binding mode between the enzyme and peptide hit.
基金Supported by Scientific Research Foundation for Young Scholars of Heilongjiang Province of China (QC07C25)The National High Technology Research and Development Program of China (2008AA10Z315)
文摘Drying technology of angiotensin converting enzyme (ACE) inhibitory peptides derived from bovine casein was investigated. No significance was observed on ACE inhibitory activity of products prepared by spay drying and freeze drying (P〉0.05). Spay drying was the best drying process for practical industry production. The inlet temperature ranged from 140℃ to 160℃ and the exit temperature ranged from 70 ℃ to 90 ℃ during the spay drying process. Under the optimal conditions, scale-up of angiotensin converted enzyme inhibitory peptide from 1 L to 10 L and the experiment was successively conducted. Peptide yield was 29% and half inhibitory concentration (IC50) was 0.53 g. L^-1.
基金the National Key Research and Development Program of China(No.2016YFD0200900)the Science Technology Department of Zhejiang Province(No.2016C02053-8),China。
文摘The aim of this work is to discover the inhibitory mechanism of tea peptides and to analyse the affinities between the peptides and the angiotensin-converting enzyme(ACE)as well as the stability of the complexes using in vitro and in silico methods.Four peptide sequences identified from tea,namely peptides I,II,III,and IV,were used to examine ACE inhibition and kinetics.The half maximal inhibitory concentration(IC_(50))values of the four peptides were(210.03±18.29),(178.91±5.18),(196.31±2.87),and(121.11±3.38)μmol/L,respectively.The results of Lineweaver-Burk plots showed that peptides I,II,and IV inhibited ACE activity in an uncompetitive manner,which requires the presence of substrate.Peptide III inhibited ACE in a noncompetitive manner,for which the presence of substrate is not necessary.The docking simulations showed that the four peptides did not bind to the active sites of ACE,indicating that the four peptides are allosteric inhibitors.The binding free energies calculated from molecular dynamic(MD)simulation were-72.47,-42.20,-52.10,and-67.14 kcal/mol(1 kcal=4.186 kJ),r espectively.The lower IC_(50)value of peptide IV may be attributed to its stability when docking with ACE and changes in the flexibility and unfolding of ACE.These four bioactive peptides with ACE inhibitory ability can be incorporated into novel functional ingredients of black tea.
基金Supported by the Program 111 of Ministry of Education of China and the Program "National Science and Technology Support Plan of Eleventh Five Year Program-ming" of China (Grant No. 2006BAD05A01)
文摘Chemical feature based pharmacophore models were generated for an angiotensin converting enzyme(ACE) inhibitory peptide using the Discovery Studio 2.0 pharmacophore modeling approach. The pharmacophore hypothesis selected has five features(one negative ionizable region,one hydrogen bond donor,one hydrogen bond acceptor and two hydrophobic functional groups). Additionally,ACE inhibitory hexapeptide previously obtained from silkworm pupae protein was optimized to target the ACE based on the selected pharmacophore. The results suggest that tri-peptide(thr-val-phe) may be structural determinant of ACE activity. Docking studies further provided confidence for the validity of the selected pharmacophore model to perform structure optimization of the ACE inhibitory peptide.