A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in f...A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in four-fold rotation symmetry. The simulation results show that this device can work at 9.824 GHz, 11.39 GHz, and 13.37 GHz with low loss and a high polarization conversion ratio (PCR) of more than 99%. The proposed design can transmit the co-polarization wave at 14.215 GHz, like a frequency selective surface. The study of the current and electric fields distributions indicates that the cross-polarization transmission is due to electric dipole coupling.展开更多
The self-similarity,high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials.In this paper,the microwave absorption properties...The self-similarity,high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials.In this paper,the microwave absorption properties of the gradient dendritic fractal metamaterial structure(GDFMs)based on carbon black and acrylonitrile-butadiene-styrene composites were investigated.The optimal metamaterial structure has an effective absorption in the frequency range of 4.5-40 GHz.The rotational-symmetry GDFMs leads to the polarization independence,and the GDFMs exhibits a wide-angle absorption performance for both TE and TM waves.It is expected that the proposed GDFMs has good application prospects in electromagnetic wave absorption.展开更多
A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due...A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due to the cascade of FSSs, and this means it could potentially be applied in a stealth curved streamlined radome. However, there is an unsteadiness of centre frequency in a wide range of incident angles and another unsteadiness of polarization in a big incident angle. In order to solve these problems, in this paper we provide a novel four-legged loaded element thick-screen FSS. The structure is analysed and simulated using the mode matching method and moment method. The centre frequency, the transmittance of centre frequency, and bandwidth of the structure are investigated when some parameters including the polarization at a big incident angle and the incident angles of TE &: TM waves are changed. The novel four-legged loaded element thick-screen FSS has better transmission properties with a better steadiness of polarization and incident angle independence. The novel structure of the four-legged loaded element thick-screen FSS provides a valuable reference for their application in a stealth curved streamlined radome.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61331005,61001039,and 41390454)
文摘A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in four-fold rotation symmetry. The simulation results show that this device can work at 9.824 GHz, 11.39 GHz, and 13.37 GHz with low loss and a high polarization conversion ratio (PCR) of more than 99%. The proposed design can transmit the co-polarization wave at 14.215 GHz, like a frequency selective surface. The study of the current and electric fields distributions indicates that the cross-polarization transmission is due to electric dipole coupling.
基金Project supported by the Natural Science Foundation of Shaanxi Province of China(Grant No.2022JQ-356)the Youth Fund of Rocket Force University of Engineering(Grant No.2022QN-B017)the National Natural Science Foundation of China(Grant No.51905542)。
文摘The self-similarity,high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials.In this paper,the microwave absorption properties of the gradient dendritic fractal metamaterial structure(GDFMs)based on carbon black and acrylonitrile-butadiene-styrene composites were investigated.The optimal metamaterial structure has an effective absorption in the frequency range of 4.5-40 GHz.The rotational-symmetry GDFMs leads to the polarization independence,and the GDFMs exhibits a wide-angle absorption performance for both TE and TM waves.It is expected that the proposed GDFMs has good application prospects in electromagnetic wave absorption.
文摘A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due to the cascade of FSSs, and this means it could potentially be applied in a stealth curved streamlined radome. However, there is an unsteadiness of centre frequency in a wide range of incident angles and another unsteadiness of polarization in a big incident angle. In order to solve these problems, in this paper we provide a novel four-legged loaded element thick-screen FSS. The structure is analysed and simulated using the mode matching method and moment method. The centre frequency, the transmittance of centre frequency, and bandwidth of the structure are investigated when some parameters including the polarization at a big incident angle and the incident angles of TE &: TM waves are changed. The novel four-legged loaded element thick-screen FSS has better transmission properties with a better steadiness of polarization and incident angle independence. The novel structure of the four-legged loaded element thick-screen FSS provides a valuable reference for their application in a stealth curved streamlined radome.