为了解决传统室内定位技术成本较高、稳定性差以及难于部署等问题,提出一种将到达时间(time of arrival,TOA)与到达角(angle of arrival,AOA)相结合的室内定位系统.该系统由定位基站与被控定位单元组成,其特征在于使用对射式布置的超声...为了解决传统室内定位技术成本较高、稳定性差以及难于部署等问题,提出一种将到达时间(time of arrival,TOA)与到达角(angle of arrival,AOA)相结合的室内定位系统.该系统由定位基站与被控定位单元组成,其特征在于使用对射式布置的超声波传感器获取定位基站与被控定位单元之间的距离特征,利用角度传感器获取被控定位单元相对于定位基站的角度特征,以单基站就实现了精确的室内定位过程.分析了该系统基本结构与原理,建立定位与控制模型,在一定范围内对其定点定位精度与跟随定位精度进行了实验验证.实验结果表明:该系统结构简单,易于安装布置,鲁棒性强,在测试范围内的最大定点定位误差不超过5 cm,跟随定位误差不超过15 cm.展开更多
Based on propagator method, a fast 2-D Angle-Of-Arrival (AOA) algorithm is proPosed in this paper. The proposed algorithm does not need the Eigen-Value Decomposition (EVD) or Singular Value Decomposition (SVD) of the ...Based on propagator method, a fast 2-D Angle-Of-Arrival (AOA) algorithm is proPosed in this paper. The proposed algorithm does not need the Eigen-Value Decomposition (EVD) or Singular Value Decomposition (SVD) of the Sample Covariance Matrix (SCM), thus the fast algorithm has lower computational complexity with insignificant performance degradation when comparing with conventional subspace approaches. Furthermore, the proposed algorithm has no performance degradation. Finally, computer simulations verify the effectiveness of the proposed algorithm.展开更多
提出一种在低空场景下基于接收信号强度(Rcecived Signal Strength,RSS)与到达角度(Angle of Arrival,AOA)信息融合的单站无源定位算法。该算法采用单架无人机设备虚拟多站设备接收无线电辐射源信号,融合RSS估计的距离信息与AOA方向角信...提出一种在低空场景下基于接收信号强度(Rcecived Signal Strength,RSS)与到达角度(Angle of Arrival,AOA)信息融合的单站无源定位算法。该算法采用单架无人机设备虚拟多站设备接收无线电辐射源信号,融合RSS估计的距离信息与AOA方向角信息,依据最小二乘准则(LS)构造算法的优化目标函数,采用凸松弛技术将目标函数等价为二阶锥规划(SOCP)问题并通过内点法求解。实验结果表明,该算法的定位精度在2 km范围内可达20 m,其定位性能优于单站无源定位算法,且由于采用单架无人机采集信号,其设备复杂度相较于多站无源定位较低。展开更多
As one of the major methods for location positioning, angle-of-arrival (AOA) estimation is a significant technology in radar, sonar, radio astronomy, and mobile communications. AOA measurements can be exploited to loc...As one of the major methods for location positioning, angle-of-arrival (AOA) estimation is a significant technology in radar, sonar, radio astronomy, and mobile communications. AOA measurements can be exploited to locate mobile units, enhance communication efficiency and network capacity, and support location-aided routing, dynamic network management, and many location-based services. In this paper, we propose an algorithm for AOA estimation in colored noise fields and harsh application scenarios. By modeling the unknown noise covariance as a linear combination of known weighting matrices, a maximum likelihood (ML) criterion is established, and a particle swarm optimization (PSO) paradigm is designed to optimize the cost function. Simulation results demonstrate that the paired estimator PSO-ML significantly outperforms other popular techniques and produces superior AOA estimates.展开更多
为了提高室内三维空间的定位精度,提出了一种基于联合到达时间差与到达角度(time difference of arrival/angle of arrival,TDOA/AOA)信息的混合定位算法。由于构建的目标函数具有非凸性,采用传统定位算法在目标函数求解过程中会出现局...为了提高室内三维空间的定位精度,提出了一种基于联合到达时间差与到达角度(time difference of arrival/angle of arrival,TDOA/AOA)信息的混合定位算法。由于构建的目标函数具有非凸性,采用传统定位算法在目标函数求解过程中会出现局部最优解的问题。因此,针对该问题,将目标函数转成二次约束二次规划问题,通过引入半定松弛(semi-definite relaxation,SDR)方法将目标函数转换为二阶锥规划(second order cone programming,SOCP)问题,寻找全局最优解。其次,针对SOCP无法对凸包外的目标进行有效定位的问题,在该算法的基础上引入了惩罚项,使松弛后的约束条件进一步逼近原始约束条件,解决了定位过程中的凸包问题。数值仿真结果表明:在10m×10m×3m的三维定位空间内,选取40×40个测试点,平均定位误差为1.39cm,可实现室内三维空间高精度定位。与传统的混合定位算法相比,均能够获得较高的定位精度。展开更多
在智慧楼宇以及电力检修运维中,需要及时获取设备或人员位置信息。针对室内因非视距传输和多径效应引起的定位精度不高问题,提出了一种基于奇偶交错布局的室分与5G结合的室内三维定位方案。首先,采用到达时间差(time difference of arri...在智慧楼宇以及电力检修运维中,需要及时获取设备或人员位置信息。针对室内因非视距传输和多径效应引起的定位精度不高问题,提出了一种基于奇偶交错布局的室分与5G结合的室内三维定位方案。首先,采用到达时间差(time difference of arrival,TDOA)和到达角度(angle of arrival,AOA)融合定位。其次,把具体定位算法融入到定位架构里,基于边缘计算快速获取室内对应移动目标的位置信息。在进行TDOA定位过程中,MEC端的定位服务器结合压缩感知进行信道估计,并在分段正交匹配追踪(stagewise orthogonal matching pursuit,StOMP)算法的基础上加入奇异值进行降噪处理。在进行AOA定位过程中,先利用改进的波束空间变换技术构造矩阵进行降维,为保证降维过程中信息不损失,提出对附加角度误差进行分析处理,然后,采用多重信号分类(multiple signal classification,MUSIC)算法进行定位。最后,5GC核心网服务器利用Chan-Taylor算法进行TDOA/AOA融合定位。仿真结果证明了所提出的定位方法能够实现对移动目标的精准定位。展开更多
文摘为了解决传统室内定位技术成本较高、稳定性差以及难于部署等问题,提出一种将到达时间(time of arrival,TOA)与到达角(angle of arrival,AOA)相结合的室内定位系统.该系统由定位基站与被控定位单元组成,其特征在于使用对射式布置的超声波传感器获取定位基站与被控定位单元之间的距离特征,利用角度传感器获取被控定位单元相对于定位基站的角度特征,以单基站就实现了精确的室内定位过程.分析了该系统基本结构与原理,建立定位与控制模型,在一定范围内对其定点定位精度与跟随定位精度进行了实验验证.实验结果表明:该系统结构简单,易于安装布置,鲁棒性强,在测试范围内的最大定点定位误差不超过5 cm,跟随定位误差不超过15 cm.
基金Supported by the Foundation of National Key Laboratory.
文摘Based on propagator method, a fast 2-D Angle-Of-Arrival (AOA) algorithm is proPosed in this paper. The proposed algorithm does not need the Eigen-Value Decomposition (EVD) or Singular Value Decomposition (SVD) of the Sample Covariance Matrix (SCM), thus the fast algorithm has lower computational complexity with insignificant performance degradation when comparing with conventional subspace approaches. Furthermore, the proposed algorithm has no performance degradation. Finally, computer simulations verify the effectiveness of the proposed algorithm.
文摘提出一种在低空场景下基于接收信号强度(Rcecived Signal Strength,RSS)与到达角度(Angle of Arrival,AOA)信息融合的单站无源定位算法。该算法采用单架无人机设备虚拟多站设备接收无线电辐射源信号,融合RSS估计的距离信息与AOA方向角信息,依据最小二乘准则(LS)构造算法的优化目标函数,采用凸松弛技术将目标函数等价为二阶锥规划(SOCP)问题并通过内点法求解。实验结果表明,该算法的定位精度在2 km范围内可达20 m,其定位性能优于单站无源定位算法,且由于采用单架无人机采集信号,其设备复杂度相较于多站无源定位较低。
文摘As one of the major methods for location positioning, angle-of-arrival (AOA) estimation is a significant technology in radar, sonar, radio astronomy, and mobile communications. AOA measurements can be exploited to locate mobile units, enhance communication efficiency and network capacity, and support location-aided routing, dynamic network management, and many location-based services. In this paper, we propose an algorithm for AOA estimation in colored noise fields and harsh application scenarios. By modeling the unknown noise covariance as a linear combination of known weighting matrices, a maximum likelihood (ML) criterion is established, and a particle swarm optimization (PSO) paradigm is designed to optimize the cost function. Simulation results demonstrate that the paired estimator PSO-ML significantly outperforms other popular techniques and produces superior AOA estimates.
文摘为了提高室内三维空间的定位精度,提出了一种基于联合到达时间差与到达角度(time difference of arrival/angle of arrival,TDOA/AOA)信息的混合定位算法。由于构建的目标函数具有非凸性,采用传统定位算法在目标函数求解过程中会出现局部最优解的问题。因此,针对该问题,将目标函数转成二次约束二次规划问题,通过引入半定松弛(semi-definite relaxation,SDR)方法将目标函数转换为二阶锥规划(second order cone programming,SOCP)问题,寻找全局最优解。其次,针对SOCP无法对凸包外的目标进行有效定位的问题,在该算法的基础上引入了惩罚项,使松弛后的约束条件进一步逼近原始约束条件,解决了定位过程中的凸包问题。数值仿真结果表明:在10m×10m×3m的三维定位空间内,选取40×40个测试点,平均定位误差为1.39cm,可实现室内三维空间高精度定位。与传统的混合定位算法相比,均能够获得较高的定位精度。
文摘在智慧楼宇以及电力检修运维中,需要及时获取设备或人员位置信息。针对室内因非视距传输和多径效应引起的定位精度不高问题,提出了一种基于奇偶交错布局的室分与5G结合的室内三维定位方案。首先,采用到达时间差(time difference of arrival,TDOA)和到达角度(angle of arrival,AOA)融合定位。其次,把具体定位算法融入到定位架构里,基于边缘计算快速获取室内对应移动目标的位置信息。在进行TDOA定位过程中,MEC端的定位服务器结合压缩感知进行信道估计,并在分段正交匹配追踪(stagewise orthogonal matching pursuit,StOMP)算法的基础上加入奇异值进行降噪处理。在进行AOA定位过程中,先利用改进的波束空间变换技术构造矩阵进行降维,为保证降维过程中信息不损失,提出对附加角度误差进行分析处理,然后,采用多重信号分类(multiple signal classification,MUSIC)算法进行定位。最后,5GC核心网服务器利用Chan-Taylor算法进行TDOA/AOA融合定位。仿真结果证明了所提出的定位方法能够实现对移动目标的精准定位。