This paper discusses a procedure that was adopted for the development of a linear regression model for estimating solar radiation in Malawi. By making use of sunshine-hours data recorded at six selected meteorological...This paper discusses a procedure that was adopted for the development of a linear regression model for estimating solar radiation in Malawi. By making use of sunshine-hours data recorded at six selected meteorological stations in the country, namely: Salima, Makoka, Karonga, Bolero, Chileka and Mzimba over the period 1991-1995, a set of Angstrom constants were obtained and averaged in order to develop the linear regression model. This model has potential for generating ground observation data of solar radiation at any given location in the country using sunshine hours as the only required input. The Gunn-Bellan Spherical Pyranometer and the Campbell Stokes Sunshine Recorder were respectively used in the measurement of incident radiation (Ib) in J·cm–2/day (converted to MJ·m–2·day–1) and sunshine hours. An Angstrom model of monthly average Clearness Index with normalized sunshine duration was then developed for each of the six meteorological stations. The resulting linear regression model was applied in estimating monthly average daily solar radiation. Regression analysis between computed and measured radiation data was applied to assess the reliability of the generated Angstrom constants. The results generally show a high degree of agreement between the two variables, with correlation coefficients ranging from 0.63 to 0.90. Angstrom constants obtained at the six meteorological stations were thereafter averaged in order to develop a linear regression model for estimating solar radiation in Malawi. Solar radiation values obtained using this model were noted to be in good agreement with those developed for each of the six meteorological stations.展开更多
In this paper, the authors numerically analyzed the analytical relationships between angstrom coefficients and optical properties of aerosols to the existing data extracted from OPAC at the spectral length of 0.25 μm...In this paper, the authors numerically analyzed the analytical relationships between angstrom coefficients and optical properties of aerosols to the existing data extracted from OPAC at the spectral length of 0.25 μm to 2.5 μm at eight relative humidity for desert, urban, marine clean and continental clean aerosols. That is apart from their relationships with the wavelength that was determined, in this paper their relation with respect to aerosols’ type and RHs are determined. The properties extracted are scattering, absorption, and extinction coefficients and single scattering albedo. The results showed that the extinction and single scattering albedo are correct for all the aerosols but single scattering co-albedo is satisfied for only sahara and continental clean.展开更多
A study on the correlation of the angstrom turbidity coefficient (β) with aerosol optical depth (τ) have been studied on the basis of field measurements carried out at Kaikhali (22.022°N & 88.614°E) ly...A study on the correlation of the angstrom turbidity coefficient (β) with aerosol optical depth (τ) have been studied on the basis of field measurements carried out at Kaikhali (22.022°N & 88.614°E) lying in the east coast of India inside the Sundarbans. The angstrom turbidity coefficients have been calculated with respect to the filter channels at 340 nm, 500 nm, 870 nm, 936 nm and 1020 nm of a Sunphotometer. Assessment of the possible influx of the fine particulate concentrations to the total aerosol loading in the area have been made with respect to the calculated angstrom turbidity values for the summer and winter seasons over a period of two years from 2004 to 2006. Substantially high angstrom turbidity coefficient values exceeding 0.2 and indicative of a relatively hazy atmosphere for both the summer and winter periods over these two years from 2004-2006 have been observed. Considering the importance of this fragile mangrove ecosystem of the Sundarbans and also the vulnerability of the area to severe impacts of climate changes, this is indeed a thought provoking issue as far as the policy makers of the country are concerned. In fact, the study has confirmed positive correlation of β with τ.展开更多
The renewable systems design software and building energy simulation software for energy efficient buildings, use as a main input the solar radiation. The implementation of such systems in the urban environment requir...The renewable systems design software and building energy simulation software for energy efficient buildings, use as a main input the solar radiation. The implementation of such systems in the urban environment requires accurate meteorological data for the interest area. The existence of a small number of weather stations that to offer data with regard to solar radiation as well as the limited access to these, makes necessary the conceiving of some more accurate estimation mathematical models for all climatological parameters. The present paper proposes a study of the Linke and AngstrOm turbidity coefficients, for Brasov urban area, with the purpose of a more accurate solar radiation simulation. Models performance is analyzed using the root mean square error (RMSE), the mean bias error (MBE), the mean percentage error (MPE) and the t-statistic.展开更多
Lidar ratios and AngstrOm exponents of continental,maritime,and desert aerosols were calculated to evaluate the effects of aerosol composition on these parameters.Their correlation was assessed using correlation analy...Lidar ratios and AngstrOm exponents of continental,maritime,and desert aerosols were calculated to evaluate the effects of aerosol composition on these parameters.Their correlation was assessed using correlation analysis and curve fitting.The Pearson correlation coefficient between the lidar ratio and the AngstrOm exponent was larger than 0.95 in all cases.We verified the reliability of the Pearson correlation coefficient using the significance test.The relationship between the lidar ratio and the Angstrom expo- nent of continental aerosol can be described by a cubic polynomial model;thus,the function relation between the change in lidar ratios at different laser wavelengths depends on the fitting coefficients and the AngstrOm exponent.The relationship between the lidar ratio and the AngstrOm exponent of both maritime and desert aerosols can be described by a linear model.In these aerosols,the linear change in lidar ratios at different laser wavelengths remains unaffected by the AngstrOm exponent.The changes in the lidar ratio in maritime aerosol at 355nm and 532nm are -0.7times and -0.18times that at 1064nm, respectively.For desert aerosol,the changes in the lidar ratio at 355nm and 532nm are 0.37 times and 1.88times that at 1064nm,respectively.展开更多
Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a...Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a given set of locations and calendar days, analyzing interannual trends in GSR and SD is important to evaluate, predict or regulate the cycles of energy and water between geosphere and atmosphere. This study aimed to exemplify interannual trends in GSR and SD, which had been recorded from 2001 to 2022 in 40 meteorological stations in Japan, and validate the applicability of an SD-based model to the evaluation of GSR. Both the measured GSR and SD had increased in many of the stations in the study period with averaged rates of 0.252 [W·m−2·y−1] and 0.015 [h·d−1·y−1], respectively. The offset and the slope of the SD-based model were estimated by fitting the model to the measured data sets and were found to have been almost constant with the averages of 0.201[-] and 0.566[-], respectively, indicating that characteristics of the SD-GSR relation had not varied for the 22-year period and that the model and its parameter set can be stationarily applicable to the analyses and predictions of GSR in recent years. The stable trends in both parameters also implied that the upward trend in SD can be a main explanatory factor for that in the measured GSR. The upward trend in SD had coincided with the increase in the frequency of heavy-shortened rains, suggesting that the time period of each rainfall event had gradually decreased, which may be attributable to the obtained upward trend in SD. Further studies are required to clarify if there is some cause-effect relation between the changes in rainfall patterns and the standard level of solar radiation reaching the land surface.展开更多
为研究徐州冬季雾-霾天气形成过程中颗粒物粒径及气溶胶光学特性的变化特征,分析了2014年12月1日-2015年2月28日徐州大气颗粒物质量浓度(PM(10)、PM(2.5)、PM1)、数浓度(0-1μm、1-2.5μm、2.5-10μm)和气溶胶光学特性等数据....为研究徐州冬季雾-霾天气形成过程中颗粒物粒径及气溶胶光学特性的变化特征,分析了2014年12月1日-2015年2月28日徐州大气颗粒物质量浓度(PM(10)、PM(2.5)、PM1)、数浓度(0-1μm、1-2.5μm、2.5-10μm)和气溶胶光学特性等数据.结果表明:0-1μm粒径范围细颗粒物的大量增多是引发徐州冬季雾-霾天气的主要因素,徐州冬季地面风速小(静风或轻风天气),较高的大气相对湿度对雾-霾的形成和维持起着重要影响作用.持续时间较长的雾霾天气,因颗粒物吸湿增长和水汽附着,1-10μm粒径范围大气颗粒物在雾霾时段易发生沉降而减少,后随相对湿度降低雾霾转为短时间的霾天气,1-10μm颗粒物数浓度大幅上升.徐州冬季500nm波段AOD total和AOD fine mode具有相同的变化趋势,雾-霾日AOD total和AOD fine mode显著高于非霾日.AOD fine mode与AOD coarse mode的比值雾-霾日亦明显高于非霾日,而且在雾-霾日Angstrom波长指数主要集中在1-1.6,表明徐州冬季雾-霾时段大气中细颗粒物为主控粒子.展开更多
文摘This paper discusses a procedure that was adopted for the development of a linear regression model for estimating solar radiation in Malawi. By making use of sunshine-hours data recorded at six selected meteorological stations in the country, namely: Salima, Makoka, Karonga, Bolero, Chileka and Mzimba over the period 1991-1995, a set of Angstrom constants were obtained and averaged in order to develop the linear regression model. This model has potential for generating ground observation data of solar radiation at any given location in the country using sunshine hours as the only required input. The Gunn-Bellan Spherical Pyranometer and the Campbell Stokes Sunshine Recorder were respectively used in the measurement of incident radiation (Ib) in J·cm–2/day (converted to MJ·m–2·day–1) and sunshine hours. An Angstrom model of monthly average Clearness Index with normalized sunshine duration was then developed for each of the six meteorological stations. The resulting linear regression model was applied in estimating monthly average daily solar radiation. Regression analysis between computed and measured radiation data was applied to assess the reliability of the generated Angstrom constants. The results generally show a high degree of agreement between the two variables, with correlation coefficients ranging from 0.63 to 0.90. Angstrom constants obtained at the six meteorological stations were thereafter averaged in order to develop a linear regression model for estimating solar radiation in Malawi. Solar radiation values obtained using this model were noted to be in good agreement with those developed for each of the six meteorological stations.
文摘In this paper, the authors numerically analyzed the analytical relationships between angstrom coefficients and optical properties of aerosols to the existing data extracted from OPAC at the spectral length of 0.25 μm to 2.5 μm at eight relative humidity for desert, urban, marine clean and continental clean aerosols. That is apart from their relationships with the wavelength that was determined, in this paper their relation with respect to aerosols’ type and RHs are determined. The properties extracted are scattering, absorption, and extinction coefficients and single scattering albedo. The results showed that the extinction and single scattering albedo are correct for all the aerosols but single scattering co-albedo is satisfied for only sahara and continental clean.
文摘A study on the correlation of the angstrom turbidity coefficient (β) with aerosol optical depth (τ) have been studied on the basis of field measurements carried out at Kaikhali (22.022°N & 88.614°E) lying in the east coast of India inside the Sundarbans. The angstrom turbidity coefficients have been calculated with respect to the filter channels at 340 nm, 500 nm, 870 nm, 936 nm and 1020 nm of a Sunphotometer. Assessment of the possible influx of the fine particulate concentrations to the total aerosol loading in the area have been made with respect to the calculated angstrom turbidity values for the summer and winter seasons over a period of two years from 2004 to 2006. Substantially high angstrom turbidity coefficient values exceeding 0.2 and indicative of a relatively hazy atmosphere for both the summer and winter periods over these two years from 2004-2006 have been observed. Considering the importance of this fragile mangrove ecosystem of the Sundarbans and also the vulnerability of the area to severe impacts of climate changes, this is indeed a thought provoking issue as far as the policy makers of the country are concerned. In fact, the study has confirmed positive correlation of β with τ.
文摘The renewable systems design software and building energy simulation software for energy efficient buildings, use as a main input the solar radiation. The implementation of such systems in the urban environment requires accurate meteorological data for the interest area. The existence of a small number of weather stations that to offer data with regard to solar radiation as well as the limited access to these, makes necessary the conceiving of some more accurate estimation mathematical models for all climatological parameters. The present paper proposes a study of the Linke and AngstrOm turbidity coefficients, for Brasov urban area, with the purpose of a more accurate solar radiation simulation. Models performance is analyzed using the root mean square error (RMSE), the mean bias error (MBE), the mean percentage error (MPE) and the t-statistic.
基金National Natural Science Foundation of China grants:No.61405158and No.41627807.
文摘Lidar ratios and AngstrOm exponents of continental,maritime,and desert aerosols were calculated to evaluate the effects of aerosol composition on these parameters.Their correlation was assessed using correlation analysis and curve fitting.The Pearson correlation coefficient between the lidar ratio and the AngstrOm exponent was larger than 0.95 in all cases.We verified the reliability of the Pearson correlation coefficient using the significance test.The relationship between the lidar ratio and the Angstrom expo- nent of continental aerosol can be described by a cubic polynomial model;thus,the function relation between the change in lidar ratios at different laser wavelengths depends on the fitting coefficients and the AngstrOm exponent.The relationship between the lidar ratio and the AngstrOm exponent of both maritime and desert aerosols can be described by a linear model.In these aerosols,the linear change in lidar ratios at different laser wavelengths remains unaffected by the AngstrOm exponent.The changes in the lidar ratio in maritime aerosol at 355nm and 532nm are -0.7times and -0.18times that at 1064nm, respectively.For desert aerosol,the changes in the lidar ratio at 355nm and 532nm are 0.37 times and 1.88times that at 1064nm,respectively.
文摘Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a given set of locations and calendar days, analyzing interannual trends in GSR and SD is important to evaluate, predict or regulate the cycles of energy and water between geosphere and atmosphere. This study aimed to exemplify interannual trends in GSR and SD, which had been recorded from 2001 to 2022 in 40 meteorological stations in Japan, and validate the applicability of an SD-based model to the evaluation of GSR. Both the measured GSR and SD had increased in many of the stations in the study period with averaged rates of 0.252 [W·m−2·y−1] and 0.015 [h·d−1·y−1], respectively. The offset and the slope of the SD-based model were estimated by fitting the model to the measured data sets and were found to have been almost constant with the averages of 0.201[-] and 0.566[-], respectively, indicating that characteristics of the SD-GSR relation had not varied for the 22-year period and that the model and its parameter set can be stationarily applicable to the analyses and predictions of GSR in recent years. The stable trends in both parameters also implied that the upward trend in SD can be a main explanatory factor for that in the measured GSR. The upward trend in SD had coincided with the increase in the frequency of heavy-shortened rains, suggesting that the time period of each rainfall event had gradually decreased, which may be attributable to the obtained upward trend in SD. Further studies are required to clarify if there is some cause-effect relation between the changes in rainfall patterns and the standard level of solar radiation reaching the land surface.
文摘为研究徐州冬季雾-霾天气形成过程中颗粒物粒径及气溶胶光学特性的变化特征,分析了2014年12月1日-2015年2月28日徐州大气颗粒物质量浓度(PM(10)、PM(2.5)、PM1)、数浓度(0-1μm、1-2.5μm、2.5-10μm)和气溶胶光学特性等数据.结果表明:0-1μm粒径范围细颗粒物的大量增多是引发徐州冬季雾-霾天气的主要因素,徐州冬季地面风速小(静风或轻风天气),较高的大气相对湿度对雾-霾的形成和维持起着重要影响作用.持续时间较长的雾霾天气,因颗粒物吸湿增长和水汽附着,1-10μm粒径范围大气颗粒物在雾霾时段易发生沉降而减少,后随相对湿度降低雾霾转为短时间的霾天气,1-10μm颗粒物数浓度大幅上升.徐州冬季500nm波段AOD total和AOD fine mode具有相同的变化趋势,雾-霾日AOD total和AOD fine mode显著高于非霾日.AOD fine mode与AOD coarse mode的比值雾-霾日亦明显高于非霾日,而且在雾-霾日Angstrom波长指数主要集中在1-1.6,表明徐州冬季雾-霾时段大气中细颗粒物为主控粒子.