期刊文献+
共找到23,281篇文章
< 1 2 250 >
每页显示 20 50 100
Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
1
作者 Zhao Zhang Gaoyuan Li +5 位作者 Yonglei Liu Haiyun Wang Bernhard J.Hoenders Chunhao Liang Yangjian Cai Jun Zeng 《Opto-Electronic Science》 2024年第1期1-12,共12页
The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communicat... The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communication.The spatial-coherence structure,that characterizes partially coherent fields,provides a new degree of freedom for carrying information.However,due to the influence of the complex transmission environment,the spatial-coherence structure is severely damaged during the propagation path,which undoubtedly limits its ability to transmit information.Here,we realize the robust far-field orbital angular momentum(OAM)transmission and detection by modulating the spatial-coherence structure of a partially coherent vortex beam with the help of the cross-phase.The cross-phase enables the OAM information,quantified by the topological charge,hidden in the spatial-coherence structure can be stably transmitted to the far field and can resist the influence of obstructions and turbulence within the communication link.This is due to the self-reconstruction property of the spatial-coherence structure embedded with the cross-phase.We demonstrate experimentally that the topological charge information can be recognized well by measuring the spatial-coherence structure in the far field,exhibiting a set of distinct and separated dark rings even under amplitude and phase perturbations.Our findings open a door for robust optical signal transmission through the complex environment and may find application in optical communication through a turbulent atmosphere. 展开更多
关键词 degree of coherence orbital angular momentum cross-phase topological charge information transmission
下载PDF
Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
2
作者 郝建海 贾凤东 +9 位作者 崔越 王昱寒 周飞 刘修彬 张剑 谢锋 白金海 尤建琦 王宇 钟志萍 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期65-74,共10页
We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagneticallyinduced transparency(EIT)Autler–Townes(AT)splitting spectra obtained using amplitude modulation of the m... We have theoretically and experimentally studied the dispersive signal of the Rydberg atomic electromagneticallyinduced transparency(EIT)Autler–Townes(AT)splitting spectra obtained using amplitude modulation of the microwave(MW)electric field.In addition to the two zero-crossing points interval△f_(zeros),the dispersion signal has two positive maxima with an interval defined as the shoulder interval△f_(sho),which is theoretically expected to be used to measure a much weaker MW electric field.The relationship of the MW field strength E_(MW)and△f_(sho)is experimentally studied at the MW frequencies of 31.6 GHz and 9.2 GHz respectively.The results show that△f_(sho)can be used to characterize the much weaker E_(MW)than that of△f_(zeros)and the traditional EIT–AT splitting interval△f_(m);the minimum E_(MW)measured by△f_(sho)is about 30 times smaller than that by△f_(m).As an example,the minimum E_(MW)at 9.2 GHz that can be characterized by△f_(sho)is 0.056 mV/cm,which is the minimum value characterized by the frequency interval using a vapor cell without adding any auxiliary fields.The proposed method can improve the weak limit and sensitivity of E_(MW)measured by the spectral frequency interval,which is important in the direct measurement of weak E_(MW). 展开更多
关键词 quantum sensor Rydberg atoms electromagnetically induced transparency amplitude modulation
下载PDF
Distributed Multicircular Circumnavigation Control for UAVs with Desired Angular Spacing
3
作者 Shixiong Li Xingling Shao +1 位作者 Wendong Zhang Qingzhen Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期429-446,共18页
This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premi... This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premise that target information is perfectly accessible by all nodes,a centralized circular enclosing control strategy is derived for multiple UAVs connected by an undirected graph to allow for formation behaviors concerning the moving target.Besides,to avoid the requirement of target’s states being accessible for each UAV,fixed-time distributed observers are introduced to acquire the state estimates in a fixed-time sense,and the upper boundary of settling time can be determined offline irrespective of initial properties,greatly releasing the burdensome communication traffic.Then,with the aid of fixed-time distributed observers,a distributed circular circumnavigation controller is derived to force all UAVs to collaboratively evolve along the preset circles while keeping a desired angular spacing.It is inferred from Lyapunov stability that all errors are demonstrated to be convergent.Simulations are offered to verify the utility of proposed protocol. 展开更多
关键词 angular spacing Distributed observer Multicircular circumnavigation Moving target UAVS
下载PDF
A Theoretical Analysis of the Acceleration and the Angular Momentum of the Universe
4
作者 Ardeshir Irani 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期101-105,共5页
The loss of Baryonic Matter through Black Holes from our spatial 3-D Universe into its 4th dimension as Dark Matter, is used along with the Conservation of Angular Momentum Principle to prove theoretically the acceler... The loss of Baryonic Matter through Black Holes from our spatial 3-D Universe into its 4th dimension as Dark Matter, is used along with the Conservation of Angular Momentum Principle to prove theoretically the accelerated expansion of the 3-D Universe, as has already been confirmed experimentally being awarded the 2011 Nobel Prize in Physics. Theoretical calculations can estimate further to indicate the true nature of the acceleration;that the outward acceleration is due to the rotation of the Universe caused by Dark Energy from the Void, that the acceleration is non-linear, initially increasing from zero for the short period of about a Million years at a constant rate, and then leveling off non-linearly over extended time before the outward acceleration begins to decrease in a non-linear fashion until it is matched by the gravitational attraction of the matter content of 4D Space and the virtual matter in 3-D Vacuum Space. m = m(4D) + m(Virtual). The rotation of our 3D Universe will become constant once all 3D matter has entered 4D space. As the 3-D Universe tries to expand further it will be pulled inward by its gravitational attraction and will then keep on oscillating about a final radius r<sub>f</sub> while it also keeps on oscillating at right angles to the radius r<sub>f</sub> around final angular velocity ω<sub>f</sub>, until it becomes part of the 4-D Universe. The constant value of the Angular Momentum of our Universe is L = . 展开更多
关键词 3-D Baryonic Matter 3-D Virtual Matter 4-D Dark Matter Non-Linear Acceleration Final Radius Final angular Velocity Conservation of angular Momentum Principle
下载PDF
Bessel–Gaussian beam-based orbital angular momentum holography
5
作者 季佳滢 郑志刚 +3 位作者 朱家龙 王乐 王新光 赵生妹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期407-413,共7页
Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstruct... Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography. 展开更多
关键词 orbital angular momentum HOLOGRAPHY Bessel–Gaussian beam OAM-multiplexing hologram
下载PDF
Ultrahigh strength and improved electrical conductivity in an aging strengthened copper alloy processed by combination of equal channel angular pressing and thermomechanical treatment
6
作者 WANG Xu LI Zhou +1 位作者 MENG Xiang-peng XIAO Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1823-1837,共15页
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper... In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample. 展开更多
关键词 Cu-Ti alloy equal channel angular pressing ROLLING aging treatment high strength
下载PDF
Generation of orbital angular momentum hologram using a modified U-net
7
作者 郑志刚 韩菲菲 +1 位作者 王乐 赵生妹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期401-407,共7页
Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the ort... Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram. 展开更多
关键词 orbital angular momentum(OAM) HOLOGRAPHY OAM holography deep learning
下载PDF
Solid state recycling of Mg-Gd-Y-Zn-Zr alloy chips by isothermal sintering and equal channel angular pressing
8
作者 Yanbo Pei Hongjun Ma +1 位作者 Meng Yuan Bugang Teng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2725-2740,共16页
The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycli... The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%. 展开更多
关键词 Mg-Gd-Y-Zn-Zr alloy Solid state recycling Microstructure evolution LPSO phase Equal channel angular pressing
下载PDF
An angular blinking jamming method based on electronically controlled corner reflectors
9
作者 GAN Lin WU Zehao +1 位作者 WANG Xuesong LI Jianbing 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期330-338,共9页
Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitud... Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed. 展开更多
关键词 monopulse radar angular blinking jamming corner reflector amplitude-comparison angle measurement metasurface
下载PDF
Altered spontaneous brain activity patterns in hypertensive retinopathy using fractional amplitude of low-frequency fluctuations:a functional magnetic resonance imaging study
10
作者 Xue-Lin Wang Xu-Jun Zheng +8 位作者 Li-Juan Zhang Jin-Yu Hu Hong Wei Qian Ling Liang-Qi He Cheng Chen Yi-Xin Wang Xu Chen Yi Shao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第9期1665-1674,共10页
AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHO... AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHODS:Twenty HR patients and 20 healthy controls(HCs)were respectively recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the fALFF method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Further,we used Pearson’s correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR.RESULTS:The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus(RO-MFG)and right lingual gyrus.In contrast,the values of fALFFs in the left middle temporal gyrus(MTG),left superior temporal pole(STP),left middle frontal gyrus(MFG),left superior marginal gyrus(SMG),left superior parietal lobule(SPL),and right supplementary motor area(SMA)were higher in the HR group.The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group(P<0.001).The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores(r=0.9232;P<0.0001)and depression scores(r=0.9682;P<0.0001).CONCLUSION:fALFF values in multiple brain regions of HR patients are abnormal,suggesting that these brain regions in HR patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of HR. 展开更多
关键词 hypertensive retinopathy fractional amplitude of low-frequency fluctuation brain region magnetic resonance imaging
下载PDF
Design of a high sensitivity and wide range angular rate sensor based on exceptional surface
11
作者 丁鑫圣 刘文耀 +7 位作者 王师贤 陶煜 周彦汝 白禹 刘来 邢恩博 唐军 刘俊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期277-286,共10页
It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low an... It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future. 展开更多
关键词 exceptional surface exceptional points ring resonator angular rate sensing rotational direction recognition wide operating range
下载PDF
The Impact of Model Based Offset Scaling Technique on the Amplitude Variation with Offset Responses from 3D Seismic Data Acquired from the Tano Basin, Offshore Ghana
12
作者 Striggner Bedu-Addo Sylvester Kojo Danuor Aboagye Menyeh 《International Journal of Geosciences》 CAS 2024年第1期40-53,共14页
Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked... Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked. Amplitude Variation with Offset (AVO)/Amplitude Variation with Angle (AVA) is necessary to account for information in the offset/angle parameter (mode converted S-wave and P-wave velocities). Since amplitudes are a function of the converted S- and P-waves, it is important to investigate the dependence of amplitudes on the elastic (P- and S-waves) parameters from the seismic data. By modelling these effects for different reservoir fluids via fluid substitution, various AVO geobody classes present along the well and in the entire seismic cube can be observed. AVO analysis was performed on one test well (Well_1) and 3D pre-stack angle gathers from the Tano Basin. The analysis involves creating a synthetic model to infer the effect of offset scaling techniques on amplitude responses in the Tano basin as compared to the effect of unscaled seismic data. The spectral balance process was performed to match the amplitude spectra of all angle stacks to that of the mid (26°) stack on the test lines. The process had an effect primarily on the far (34° - 40°) stacks. The frequency content of these stacks slightly increased to match that of the near and mid stacks. In offset scaling process, the root mean square (RMS) amplitude comparison between the synthetic and seismic suggests that the amplitude of the far traces should be reduced relative to the nears by up to 16%. However, the exact scaler values depend on the time window considered. This suggests that the amplitude scaling with offset delivered from seismic processing is only approximately correct and needs to be checked with well synthetics and adjusted accordingly prior to use for AVO studies. The AVO attribute volumes generated were better at resolving anomalies on spectrally balanced and offset scaled data than data delivered from conventional processing. A typical class II AVO anomaly is seen along the test well from the cross-plot analysis and AVO attribute cube which indicates an oil filled reservoir. 展开更多
关键词 amplitude Variation with Offset (AVO) Model Based Offset Scaling Technique Tano Basin
下载PDF
Salinity effect-induced ENSO amplitude modulation in association with the interdecadal Pacific Oscillation
13
作者 Hai ZHI Xiaokun WANG +2 位作者 Rong-Hua ZHANG Pengfei LIN Jifeng QI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1019-1036,共18页
A 110-year ensemble simulation of an ocean general circulation model(OGCM)was analyzed to identify the modulation of salinity interdecadal variability on El Niño-Southern Oscillation(ENSO)amplitude in the tropica... A 110-year ensemble simulation of an ocean general circulation model(OGCM)was analyzed to identify the modulation of salinity interdecadal variability on El Niño-Southern Oscillation(ENSO)amplitude in the tropical Pacific during 1901-2010.The simulating results show that sea surface salinity(SSS)variation in the region exhibits notable and coherent interdecadal variability signal,which is closely associated with the Interdecadal Pacific Oscillation(IPO).As salinity increases or reduces,the SSS modulations on ENSO amplitude during its warm/cold events vary asymmetrically with positive/negative IPO phases.Physically,salinity interdecadal variability can enhance or reduce ENSO-related conditions in upper-ocean stratification,contributing noticeably to ENSO variability.Salinity anomalies associated with the mixed layer depth and barrier layer thickness can modulate ENSO amplitude during positive and negative IPO phases,resulting in the asymmetry of sea surface temperature(SST)anomaly in the tropical Pacific.During positive IPO phases,SSS interdecadal variability contributes positively to El Niño amplitude but negatively to La Niña amplitude by enhancing or reducing SSS interannual variability,and vice versa during negative IPO phases.Quantitatively,the results indicate that the modulation of the ENSO amplitude by the SSS interdecadal variability is 15%-28%during negative IPO phases and 30%-20%during positive IPO phases,respectively.Evidently,the SSS interdecadal variability associated with IPO and its modulation on ENSO amplitude in the tropical Pacific are among factors essentially contributing ENSO diversity. 展开更多
关键词 El Niño-Southern Oscillation(ENSO)amplitude Interdecadal Pacific Oscillation(IPO) ocean salinity variability tropical Pacific upper-ocean stratification
下载PDF
O(logN) Algorithm for Amplitude Amplification and O(logN) Algorithms for Amplitude Transfer in Grover’s Algorithm
14
作者 Ying Liu 《American Journal of Computational Mathematics》 2024年第2期169-188,共20页
Grovers algorithm is a category of quantum algorithms that can be applied to many problems through the exploitation of quantum parallelism. The Amplitude Amplification in Grovers algorithm is T = O(N). This paper intr... Grovers algorithm is a category of quantum algorithms that can be applied to many problems through the exploitation of quantum parallelism. The Amplitude Amplification in Grovers algorithm is T = O(N). This paper introduces two new algorithms for Amplitude Amplification in Grovers algorithm with a time complexity of T = O(logN), aiming to improve efficiency in quantum computing. The difference between Grovers algorithm and our first algorithm is that the Amplitude Amplification ratio in Grovers algorithm is an arithmetic series and ours, a geometric one. Because our Amplitude Amplification ratios converge much faster, the time complexity is improved significantly. In our second algorithm, we introduced a new concept, Amplitude Transfer where the marked state is transferred to a new set of qubits such that the new qubit state is an eigenstate of measurable variables. When the new qubit quantum state is measured, with high probability, the correct solution will be obtained. 展开更多
关键词 Quantum Computing ORACLE amplitude Amplification Grover’s Algorithm
下载PDF
Research on Instantaneous Angular Speed Signal Separation Method for Planetary Gear Fault Diagnosis
15
作者 Xinkai Song Yibao Zhang Shuo Zhang 《Modern Mechanical Engineering》 2024年第2期39-50,共12页
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation... Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains. 展开更多
关键词 Planetary Gear Train Encoder Signal Instantaneous angular Speed Signal Time-Domain Synchronous Averaging Fault Diagnosis
下载PDF
Intrinsic Spin Angular Momentum of Electron Relation to the Discrete Indivisible Quantum of Time Kshana or Moment
16
作者 Shesharao M. Wanjerkhede 《Journal of Modern Physics》 2024年第9期1337-1352,共16页
The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or mom... The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research. 展开更多
关键词 Natural Time Unit Quantum Time Kshana Plank Time Intrinsic angular Momentum Thin Disc Model Compton Wavelength
下载PDF
Atlantic blocking events in a simplified nonlinear baroclinic model for local finite-amplitude wave activity
17
作者 Ning Shi Bamidele Abiodun Paul Wencai Liu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第4期41-45,共5页
为研究北大西洋阻高的形成机制,本文在局部有限振幅波活动(LWA)框架下进行了一系列数值实验.采用的数值模型能显式地描绘出两种重要的大气内部动力过程,即非线性纬向位涡通量和Rossby波包传播.模拟结果显示,这两种动力学过程均是形成大... 为研究北大西洋阻高的形成机制,本文在局部有限振幅波活动(LWA)框架下进行了一系列数值实验.采用的数值模型能显式地描绘出两种重要的大气内部动力过程,即非线性纬向位涡通量和Rossby波包传播.模拟结果显示,这两种动力学过程均是形成大西洋阻高的重要机理.具体地,非线性纬向位涡通量和Rossby波包传播,分别是大西洋阻高南部和北部LWA形成的主导因子.因此,本研究综合了前人关于大西洋阻高的研究成果,为其形成机理提供了新的认识. 展开更多
关键词 斜压模式 局地有限振幅波活动 罗斯贝波传播 非线性效应
下载PDF
Trend in seasonal amplitude of northern net ecosystem production:Simulated results from IAP DGVM in CAS-ESM2
18
作者 Jiawen Zhu Xiaodong Zeng 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第2期45-51,共7页
北方陆地净生态系统生产力(NEP)具有明显的季节变化特征,这是大气CO_(2)季节变化的关键驱动.研究这些碳循环过程并理解潜在的驱动因素是气候研究的一个关键问题.本文利用第二代中国科学院地球系统模式(CAS-ESM2)中的全球植被动态模型(IA... 北方陆地净生态系统生产力(NEP)具有明显的季节变化特征,这是大气CO_(2)季节变化的关键驱动.研究这些碳循环过程并理解潜在的驱动因素是气候研究的一个关键问题.本文利用第二代中国科学院地球系统模式(CAS-ESM2)中的全球植被动态模型(IAPDGVM),研究了1990-2014年北方NEP(40°-90°N)的季节振幅及其变化趋势.在初始化试验的基础上,本文开展了一个控制试验来评估模拟的北方NEP季节幅度的变化趋势,同时开展了三个敏感性试验来研究气候和大气CO_(2)的贡献.结果表明:1990-2014年,模拟的北方NEP季节振幅显著增加,趋势为9.69万吨碳/月/年,这主要是由于最大NEP增加所致.当分别排除CO_(2)施肥效应和气候效应时,上述增加趋势大大减弱.这些显著的减少表明大气CO_(2)和气候变化对北方NEP的季节性振幅有重要影响.尽管模式存在不确定性,但这些结果有利于进一步提升IAPDGVM对陆地碳循环的精确模拟,也为CAS-ESM研究碳-气候相互作用的应用提供了重要参考. 展开更多
关键词 净生态系统生产力 北方陆地生态系统 季节变化幅度 CO_(2)施肥效应 气候效应
下载PDF
Suppression of stimulated Raman scattering by angularly incoherent light, towards a laser system of incoherence in all dimensions of time, space, and angle 被引量:3
19
作者 Yi Guo Xiaomei Zhang +3 位作者 Dirui Xu Xinju Guo Baifei Shen Ke Lan 《Matter and Radiation at Extremes》 SCIE EI CSCD 2023年第3期27-33,共7页
Laser–plasma instability(LPI)is one of the main obstacles to achieving predictable and reproducible fusion at high gain through laser-driven inertial confinement fusion(ICF).In this paper,for the first time,we show a... Laser–plasma instability(LPI)is one of the main obstacles to achieving predictable and reproducible fusion at high gain through laser-driven inertial confinement fusion(ICF).In this paper,for the first time,we show analytically and confirm with three-dimensional particle-incell simulations that angular incoherence provides suppression of the instability growth rate that is additional to and much stronger than that provided by the well-known temporal and spatial incoherence usually used in ICF studies.For the model used in our calculations,the maximum field ratio between the stimulated Raman scattering and the driving pulses drops from 0.2 for a Laguerre–Gaussian pulse with a single nonzero topological charge to 0.05 for a super light spring with an angular momentum spread and random relative phases.In particular,angular incoherence does not introduce extra undesirable hot electrons.This provides a novel method for suppressing LPI by using light with an angular momentum spread and paves the way towards a low-LPI laser system for inertial fusion energy with a super light spring of incoherence in all dimensions of time,space,and angle,and may open the door to the use of longer-wavelength lasers for inertial fusion energy. 展开更多
关键词 SCATTERING DIMENSIONS angular
下载PDF
Lensless complex amplitude demodulation based on deep learning in holographic data storage 被引量:3
20
作者 Jianying Hao Xiao Lin +5 位作者 Yongkun Lin Mingyong Chen Ruixian Chen Guohai Situ Hideyoshi Horimai Xiaodi Tan 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第3期42-56,共15页
To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is nece... To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is necessary during data readout in HDS.In this study,we proposed a complex amplitude demodulation method based on deep learning from a single-shot diffraction intensity image and verified it by a non-interferometric lensless experiment demodulating four-level amplitude and four-level phase.By analyzing the correlation between the diffraction intensity features and the amplitude and phase encoding data pages,the inverse problem was decomposed into two backward operators denoted by two convolutional neural networks(CNNs)to demodulate amplitude and phase respectively.The experimental system is simple,stable,and robust,and it only needs a single diffraction image to realize the direct demodulation of both amplitude and phase.To our investigation,this is the first time in HDS that multilevel complex amplitude demodulation is achieved experimentally from one diffraction intensity image without iterations. 展开更多
关键词 holographic data storage complex amplitude demodulation deep learning computational imaging
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部