A drive signal frequency-lock method for quartz angular-rate sensor is presented. The calculation result obtained by the equivalent volume force analytic method indicated that when taking the inherent frequency of the...A drive signal frequency-lock method for quartz angular-rate sensor is presented. The calculation result obtained by the equivalent volume force analytic method indicated that when taking the inherent frequency of the drive tines as the drive signal frequency the phase of the reference vibration is 90° behind that of the drive signal, and the square of amplitude is less than that of the maximal amplitude by 1/(4Q~2_d) merely. The curves derived from the finite element analytic method proved that near the inherent frequency the phase shift of the feedback voltage is identical to that of the reference vibration, and the amplitude is proportional to that of the reference vibration, and the phase shift is linear approximatively with the frequency shift. The frequency shift could be calculated according to the phase shift obtained by quadrature correlation detection, so the drive signal frequency could be locked at the inherent frequency of the drive tines by means of iteration.展开更多
A simple fiber sensor to measure angular displacement with high resolution, which is based on whispering gallery mode (WGM) resonance in bent optical fibers,is proposed. The sensor is composed of a single loop forme...A simple fiber sensor to measure angular displacement with high resolution, which is based on whispering gallery mode (WGM) resonance in bent optical fibers,is proposed. The sensor is composed of a single loop formed by loosely tying a knot using single mode fiber. To measure the transmission spectra, a tunable laser and an optic power meter are connected to the two ends of fi- ber loop, respectively. Significant WGM resonances occur over the investigated wavelength range for all the sensors with different bend radius. The angular-displacement sensitivity is studied in the range from -0. 1°to 0. 1°. The detection limit of 1.49 × 10 ^-7 rad can be achieved for the detecting system with the resolution of lpm. The simple loop-structure fiber sensor has potential application prospect in the field of architecture or bridge building with low detection limit and low cost.展开更多
The exact thermoelastic analysis of a functionally graded piezoelectrical (FGP) rotating cylinder is investigated analytically. The cylinder is subjected to a com- bination of electrical, thermal, and mechanical loa...The exact thermoelastic analysis of a functionally graded piezoelectrical (FGP) rotating cylinder is investigated analytically. The cylinder is subjected to a com- bination of electrical, thermal, and mechanical loads simultaneously. The structure is a simplified model of a rotational sensor or actuator. The basic governing differential equation of the system is obtained by using the energy method. A novel term, named as the additional energy, is introduced to exact the evaluation of the energy functional. The solution to the governing differential equation is presented for two types of boundary conditions including free rotating and rotating cylinders exposed to the inner pressure. The effect of the angular velocity is investigated on the radial distribution of various components. The mentioned structure can be considered as a sensor for measuring the angular velocity of the cylinder subjected to the pressure and temperature. The obtained results indicate that the electrical potential is proportional to the angular velocity.展开更多
The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction findin...The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.展开更多
In recent years,a large number of small volume,low cost micro electro mechanical systems(MEMS)digital three-axis angular rate gyroscopes have been developed and widely used in civil and military fields.However,these...In recent years,a large number of small volume,low cost micro electro mechanical systems(MEMS)digital three-axis angular rate gyroscopes have been developed and widely used in civil and military fields.However,these kinds of gyroscopes have poor performances in initial zero-bias,temperature drift,In-Run bias stability,bias repeatability,etc.,their output errors need to be compensated before being used.Based on a lot of experiments,the temperature drift and the initial zero-bias are the major error sources in the MEMS gyroscopes output data.Due to the poor repeatability of temperature drift,the temperature compensation coefficients need to be recalculated every time before using.In order to recalculate parameters of the temperature compensation model quickly,a 1st-order polynomial model of temperature is established,then a forgetting factor recursive least squares estimator will be adopted to identify the model parameters in real time.Static and dynamic experimental data shows that this method removed/compensated the temperature drift and initial zero-bias from the output of the gyroscopes effectively.展开更多
In this paper,the giant magnetoresistance(GMR)multilayer sensor is fabricated with a Wheatstone bridge,and it exhibits excellent performance with a sensitivity of 2.8349 mV/(V/Oe)(1 Oe=79.5775 A·m^-1)and a satura...In this paper,the giant magnetoresistance(GMR)multilayer sensor is fabricated with a Wheatstone bridge,and it exhibits excellent performance with a sensitivity of 2.8349 mV/(V/Oe)(1 Oe=79.5775 A·m^-1)and a saturation field of 26 Oe along the sensitive axis.The GMR sensor is also characterized in a high magnetic field.The sensitivity decreases from 2.8349 mV/(V/Oe)at an angle of 0°to 0.0175 mV/(V/Oe)at an angle of 90°.Then,the sensor is placed in a series of rotating magnetic fields.We propose a model to express the output characteristics of the GMR multilayer sensor.The transfer curves of the sensor can be shown as two exactly symmetrical circles with an increasing radius when the magnetic field increases.The experimental results are consistent with the simulation results of the model.The advantage of this model is that it is simpler and more intuitive.展开更多
文摘A drive signal frequency-lock method for quartz angular-rate sensor is presented. The calculation result obtained by the equivalent volume force analytic method indicated that when taking the inherent frequency of the drive tines as the drive signal frequency the phase of the reference vibration is 90° behind that of the drive signal, and the square of amplitude is less than that of the maximal amplitude by 1/(4Q~2_d) merely. The curves derived from the finite element analytic method proved that near the inherent frequency the phase shift of the feedback voltage is identical to that of the reference vibration, and the amplitude is proportional to that of the reference vibration, and the phase shift is linear approximatively with the frequency shift. The frequency shift could be calculated according to the phase shift obtained by quadrature correlation detection, so the drive signal frequency could be locked at the inherent frequency of the drive tines by means of iteration.
基金Supported by the National Basic Research Program of China ( "973" Program) ( 2011 CB013000 ) the National Natural Sci- ence Foundation of China (NSFC) ( 90923039 51105038)
文摘A simple fiber sensor to measure angular displacement with high resolution, which is based on whispering gallery mode (WGM) resonance in bent optical fibers,is proposed. The sensor is composed of a single loop formed by loosely tying a knot using single mode fiber. To measure the transmission spectra, a tunable laser and an optic power meter are connected to the two ends of fi- ber loop, respectively. Significant WGM resonances occur over the investigated wavelength range for all the sensors with different bend radius. The angular-displacement sensitivity is studied in the range from -0. 1°to 0. 1°. The detection limit of 1.49 × 10 ^-7 rad can be achieved for the detecting system with the resolution of lpm. The simple loop-structure fiber sensor has potential application prospect in the field of architecture or bridge building with low detection limit and low cost.
文摘The exact thermoelastic analysis of a functionally graded piezoelectrical (FGP) rotating cylinder is investigated analytically. The cylinder is subjected to a com- bination of electrical, thermal, and mechanical loads simultaneously. The structure is a simplified model of a rotational sensor or actuator. The basic governing differential equation of the system is obtained by using the energy method. A novel term, named as the additional energy, is introduced to exact the evaluation of the energy functional. The solution to the governing differential equation is presented for two types of boundary conditions including free rotating and rotating cylinders exposed to the inner pressure. The effect of the angular velocity is investigated on the radial distribution of various components. The mentioned structure can be considered as a sensor for measuring the angular velocity of the cylinder subjected to the pressure and temperature. The obtained results indicate that the electrical potential is proportional to the angular velocity.
基金supported by the National Natural Science Foundation of China (61102106)the Fundamental Research Funds for the Central Universities (HEUCF1208 HEUCF100801)
文摘The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
文摘In recent years,a large number of small volume,low cost micro electro mechanical systems(MEMS)digital three-axis angular rate gyroscopes have been developed and widely used in civil and military fields.However,these kinds of gyroscopes have poor performances in initial zero-bias,temperature drift,In-Run bias stability,bias repeatability,etc.,their output errors need to be compensated before being used.Based on a lot of experiments,the temperature drift and the initial zero-bias are the major error sources in the MEMS gyroscopes output data.Due to the poor repeatability of temperature drift,the temperature compensation coefficients need to be recalculated every time before using.In order to recalculate parameters of the temperature compensation model quickly,a 1st-order polynomial model of temperature is established,then a forgetting factor recursive least squares estimator will be adopted to identify the model parameters in real time.Static and dynamic experimental data shows that this method removed/compensated the temperature drift and initial zero-bias from the output of the gyroscopes effectively.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFF01010701)the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ17F010004)the National Natural Science Foundation of China(Grant No.61741506)
文摘In this paper,the giant magnetoresistance(GMR)multilayer sensor is fabricated with a Wheatstone bridge,and it exhibits excellent performance with a sensitivity of 2.8349 mV/(V/Oe)(1 Oe=79.5775 A·m^-1)and a saturation field of 26 Oe along the sensitive axis.The GMR sensor is also characterized in a high magnetic field.The sensitivity decreases from 2.8349 mV/(V/Oe)at an angle of 0°to 0.0175 mV/(V/Oe)at an angle of 90°.Then,the sensor is placed in a series of rotating magnetic fields.We propose a model to express the output characteristics of the GMR multilayer sensor.The transfer curves of the sensor can be shown as two exactly symmetrical circles with an increasing radius when the magnetic field increases.The experimental results are consistent with the simulation results of the model.The advantage of this model is that it is simpler and more intuitive.