期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Degradation of Aniline Wastewater Using Dielectric Barrier Discharges at Atmospheric Pressure 被引量:2
1
作者 武海霞 方志 徐炎华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第3期228-234,共7页
Aniline is a toxic water pollutant detected in drinking water and surface water, and this chemical is harmful to both human and aquatic life. A dielectric barrier discharge (DBD) reactor was designed in this study t... Aniline is a toxic water pollutant detected in drinking water and surface water, and this chemical is harmful to both human and aquatic life. A dielectric barrier discharge (DBD) reactor was designed in this study to investigate the treatment of aniline in aqueous solution. Discharge characteristics were assessed by measuring voltage and current waveforms, capturing light emission images, and obtaining optical emission spectra. The effects of several parameters were analyzed, including treatment distance, discharge power, DBD treatment time, initial pH of aniline solutions, and addition of sodium carbonate and hydrogen peroxide to the treatment. Aniline degradation increased with increasing discharge power. Under the same conditions, higher degradation was obtained at a treatment distance of 0 mm than at other treatment distances. At a discharge power of 21.5 W, 84.32% of aniline was removed after 10 rain of DBD treatment. Initial pH significantly influenced aniline degradation. Adding a certain dosage of sodium carbonate and hydrogen peroxide to the wastewater can accelerate the degradation rate of aniline. Possible degradation pathways of aniline by DBD plasmas were proposed based on the analytical data of GC/MS and TOC. 展开更多
关键词 Non-thermal plasma (NTP) dielectric barrier discharge (DBD) aniline degradation wastewater treatment
下载PDF
A novel and complete gene cluster involved in the degradation of aniline by Delftia sp. AN3 被引量:10
2
作者 ZHANG Tao ZHANG Jinglei +1 位作者 LIU Shuangjiang LIU Zhipei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第6期717-724,共8页
A recombinant strain, Escherichia coli JM109-AN1, was obtained by constructing of a genomic library of the total DNA of Delftia sp. AN3 in E. coli JM109 and screening for catechol 2,3-dioxygenase activity. This recomb... A recombinant strain, Escherichia coli JM109-AN1, was obtained by constructing of a genomic library of the total DNA of Delftia sp. AN3 in E. coli JM109 and screening for catechol 2,3-dioxygenase activity. This recombinant strain could grow on aniline as sole carbon, nitrogen and energy source. Enzymatic assays revealed that the exogenous genes including aniline dioxygenase (AD) and catechol 2,3-dioxygenase (C230) genes could well express in the recombinant strain with the activities of AD and C230 up to 0.31 U/mg wet cell and 1.92 U/mg crude proteins, respectively. The AD or C23O of strain AN3 could only catalyze aniline or catechol but not any other substituted substrates. This recombinant strain contained a recombinant plasmid, pKC505-AN1, in which a 29.7-kb DNA fragment from Delftia sp. AN3 was inserted. Sequencing and open reading frame (orfs) analysis of this 29.7 kb fragment revealed that it contained at least 27 orfs, among them a gene cluster (consisting of at least 16 genes, named danQTA1A2BRDCEFG1HIJKG2) was responsible for the complete metabolism of aniline to TCA-cycle intermediates. This gene cluster could be divided into two main parts, the upper sequences consisted of 7 genes (danQTA1A2BRD) were predicted to encode a multi-component aniline dioxygenase and a LysR-type regulator, and the central genes (danCEFG1HIJKG2) were expected to encode meta-cleavage pathway enzymes for catechol degradation to TCA-cycle intermediates. Unlike clusters tad from Delftia tsuruhatensis AD9 and tdn from Pseudomonas putida UCC22, in this gene cluster, all the genes were in the same transcriptional direction. There was only one set of C230 gene (danC) and ferredoxin-like protein gene (danD). The presence of only one set of these two genes and specificity of AD and C230 might be the reason for strain AN3 could only degrade aniline. The products of danQTA1A2BRDC showed 99%-100% identity to those from Delftia acidovorans 7N, and 50%-85% identity to those of tad cluster from D. tsuruhatensis AD9 in amino acid residues. Besides this dan cluster, the 29.7 kb fragment also contained genes encoding the trans-membrane transporter and transposases which might be needed for transposition of the gene cluster. Pulsed-field gel electrophoresis (PFGE) and plasmid curing experiments suggested that the dan cluster might be encoded on the chromosome of strain AN3. The GenBank accession number for the dan cluster of Delftia sp. AN3 is DQ661649. 展开更多
关键词 aniline BIOdegradation Delftia sp. AN3 genomic library aniline degradative gene cluster
下载PDF
Biodegradation of Aniline and Abundance of Potential Degraders in River Waters
3
作者 N. GOONEWARDENA M. NASU +3 位作者 A. OKUDA K. TANI Y. TAKUBO M. KONDO 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1992年第1期25-32,共8页
Total dissolved organic carbon (TOC), number of colony forming units (CFU), and total direct count (TDC) were compared to the biodegradation of aniline and the number of potential degraders in water samples from head ... Total dissolved organic carbon (TOC), number of colony forming units (CFU), and total direct count (TDC) were compared to the biodegradation of aniline and the number of potential degraders in water samples from head waters to down stream of the Ina River and several other sites of rivers traversing Osaka city. The results indicate that aniline degrading populations of these various microbial communities exhibit different activities probably depending on the extent of adaptation to pollutants to which the microbes are exposed. The number of aniline degraders found in river water samples was in agreement with other parameters which were used to demonstrate the degree of pollution in river water even though higher biodegradability was evident in waters which show comparatively low TOC and CFU. These results suggest that biodegradation of aniline and enumeration of its potential degraders may serve as valuable indicators for the assessment of pollution in river waters. 展开更多
关键词 Biodegradation of aniline and Abundance of Potential Degraders in River Waters
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部