Pig models are widely used in otological research. The establishment of common pig and miniature pig animal models has opened up new fields in otological research and is also an ideal large otological animal model. Th...Pig models are widely used in otological research. The establishment of common pig and miniature pig animal models has opened up new fields in otological research and is also an ideal large otological animal model. This article introduces the applications, current status, progress, advantages, and issues of using pigs as otologic animal models. It summarizes current research on pigs in the fields of hearing disorders, otitis, vertigo, cochlea, gene editing, and tissue engineering, among other otologic and audiological areas. These models are valuable for translating basic medical science into clinical applications. Based on this, platforms have been established for studying deafness and vertigo, cochlear implantation experiments, stem cell and gene therapy, and tissue engineering. These serve as ideal experimental models for the prevention and treatment of ear diseases, pointing toward new directions. This will bolster the promotion and application of pig models in the fields of tissue engineering and gene editing in the future.展开更多
Objective To investigate the suitability of miniature pigs as an animal model for otological research. Methods Microdissection of the temporal bone was performed on 10 miniature pigs and recorded on photo-graphs. Resu...Objective To investigate the suitability of miniature pigs as an animal model for otological research. Methods Microdissection of the temporal bone was performed on 10 miniature pigs and recorded on photo-graphs. Results The morphology and measurement of the external, middle and inner ear and the lateral re-cess of the miniature pigs were obtained by microdissection. Conclusion Compared to traditional animal models, the miniature pig may be a better model for biomedical research because of its many similarities in physiological functions with humans. Similarities of the temporal bone structures, including the external, middle and inner ear and the lateral recess, between the miniature pig and human make the animal a poten-tially useful model for otological research.展开更多
目的通过120dB SPL宽频带白噪声对巴马香猪和豚鼠各进行单次3小时的暴露,观察比较该种噪声对两种模型动物听力损伤的特点,找到更适用于研究噪声性听力损伤的动物模型。方法选取8只6月龄ABR听阈正常的巴马香猪,和8只5~6周龄ABR听阈正常...目的通过120dB SPL宽频带白噪声对巴马香猪和豚鼠各进行单次3小时的暴露,观察比较该种噪声对两种模型动物听力损伤的特点,找到更适用于研究噪声性听力损伤的动物模型。方法选取8只6月龄ABR听阈正常的巴马香猪,和8只5~6周龄ABR听阈正常的豚鼠,设置4个ABR测听记录点:噪声暴露前,噪声暴露后即刻(P0)、1天(P1)、7天(P7)。全部测听结束后,取材制作耳蜗标本,进行扫描电镜观察形态。结果通过统计学分析,豚鼠组在120dB SPL宽频带白噪声暴露后即刻的ABR阈值与暴露1天的ABR阈值具有明显差异,具有统计学意义,而巴马香猪组则无明显统计学差异。豚鼠组在噪声暴露前和噪声暴露后7天的ABR阈值无明显统计学差异,而巴马香猪组却有明显的统计学差异。相对于豚鼠,巴马香猪耳蜗标本扫描电镜提示了更多的纤毛异常。结论120d B SPL宽频带白噪声暴露会对巴马香猪和豚鼠造成一定程度的听力损伤。其中巴马香猪较豚鼠表现更为明显的听力损失,且毛细胞出现了更多的病理改变,由此本研究表明在120d B SPL宽频带白噪声单次暴露3小时的条件下,巴马香猪是一个更适于白噪声与听力损伤的研究的动物模型,从而可以更好地为噪声性耳聋提供动物模型。展开更多
文摘Pig models are widely used in otological research. The establishment of common pig and miniature pig animal models has opened up new fields in otological research and is also an ideal large otological animal model. This article introduces the applications, current status, progress, advantages, and issues of using pigs as otologic animal models. It summarizes current research on pigs in the fields of hearing disorders, otitis, vertigo, cochlea, gene editing, and tissue engineering, among other otologic and audiological areas. These models are valuable for translating basic medical science into clinical applications. Based on this, platforms have been established for studying deafness and vertigo, cochlear implantation experiments, stem cell and gene therapy, and tissue engineering. These serve as ideal experimental models for the prevention and treatment of ear diseases, pointing toward new directions. This will bolster the promotion and application of pig models in the fields of tissue engineering and gene editing in the future.
基金supported by grants from the NationalBasic Research Program of China(973 Program)(#2012CB9679002011CBA01000)the National NaturalScience Foundation of China(NSFC#81271082)
文摘Objective To investigate the suitability of miniature pigs as an animal model for otological research. Methods Microdissection of the temporal bone was performed on 10 miniature pigs and recorded on photo-graphs. Results The morphology and measurement of the external, middle and inner ear and the lateral re-cess of the miniature pigs were obtained by microdissection. Conclusion Compared to traditional animal models, the miniature pig may be a better model for biomedical research because of its many similarities in physiological functions with humans. Similarities of the temporal bone structures, including the external, middle and inner ear and the lateral recess, between the miniature pig and human make the animal a poten-tially useful model for otological research.
文摘目的通过120dB SPL宽频带白噪声对巴马香猪和豚鼠各进行单次3小时的暴露,观察比较该种噪声对两种模型动物听力损伤的特点,找到更适用于研究噪声性听力损伤的动物模型。方法选取8只6月龄ABR听阈正常的巴马香猪,和8只5~6周龄ABR听阈正常的豚鼠,设置4个ABR测听记录点:噪声暴露前,噪声暴露后即刻(P0)、1天(P1)、7天(P7)。全部测听结束后,取材制作耳蜗标本,进行扫描电镜观察形态。结果通过统计学分析,豚鼠组在120dB SPL宽频带白噪声暴露后即刻的ABR阈值与暴露1天的ABR阈值具有明显差异,具有统计学意义,而巴马香猪组则无明显统计学差异。豚鼠组在噪声暴露前和噪声暴露后7天的ABR阈值无明显统计学差异,而巴马香猪组却有明显的统计学差异。相对于豚鼠,巴马香猪耳蜗标本扫描电镜提示了更多的纤毛异常。结论120d B SPL宽频带白噪声暴露会对巴马香猪和豚鼠造成一定程度的听力损伤。其中巴马香猪较豚鼠表现更为明显的听力损失,且毛细胞出现了更多的病理改变,由此本研究表明在120d B SPL宽频带白噪声单次暴露3小时的条件下,巴马香猪是一个更适于白噪声与听力损伤的研究的动物模型,从而可以更好地为噪声性耳聋提供动物模型。