Preparation of the temporal bone for light microscopy is an important step in histological studies of the inner ear. Due to the complexity of structures of the inner ear, it is difficult to measure or compare structur...Preparation of the temporal bone for light microscopy is an important step in histological studies of the inner ear. Due to the complexity of structures of the inner ear, it is difficult to measure or compare structures of interest without a commonly accepted standardized measure of temporal bone sections. Therefore, standardization of temporal bone sections is very important for histological assessment of sensory hair cells and peripheral ganglion neurons in the cochlear and vestibular systems. The standardized temporal bone sectioning is oriented to a plane parallel to the outer and internal auditory canals. Sections are collected from the epitympanum to the hypotympanum to reveal layers in the order of the crista ampullaris of the superior and lateral semicircular canals, macula utriculi and macula sacculi, superior vestibular ganglion neurons, macula of saccule and inferior vestibular ganglion neurons, cochlear modiolus, endolymphatic duct and endolymphatic sac, and finally the crista ampullaris of the posterior semicircular canal. Moreover, technical details of preparing for temporal bone sectioning including fixation, decalcification, whole temporal bone staining, embedding penetration, and embedding orientation are also discussed.展开更多
Objectives: To assess the genotoxic effect of a new antitumor ozone-photodynamic therapy using the improvedmodification of the COMET assay. Methods: Xenograft cancer models on 58 rats were used. The sarcoma RA was t...Objectives: To assess the genotoxic effect of a new antitumor ozone-photodynamic therapy using the improvedmodification of the COMET assay. Methods: Xenograft cancer models on 58 rats were used. The sarcoma RA was transplantedsubcutaneously, and after increasing of tumor volume from 0.5 to 4.2 cm3, rats were divided into the four groups: "Intact"--healthy,"Control"--with xenografted tumors and no treatment, "PDT"--the rats treated with the photodynamic therapy, "PDT +ozone"--the rats were treated with both photodynamic therapy and injections of ozonated saline solution. The toxicity of treatmentwas assessed by DNA damage in leukocytes using the new modification of the COMET assay. The analysis of the "COMETs" wasperformed following the percentage of DNA in the tail of the "COMET" (% TDNA). Results: A combination of PDT and ozonemakes the strongest negative impact on tumor growth. The tumor growth inhibition is associated with low genotoxic exposure ofozone-photodynamic therapy on whole blood leukocytes of cancer rats. Conclusions: A new modification of the COMET assay canprovide the assessment of the genotoxic effect of the antitumor therapy in experimental neoplasia.展开更多
Essential bibliography, with therein references included, is presented owing to the contribution of the author groups to Mitochondrial Filamentation, which is a new emerging field of physiological energy metabolism. T...Essential bibliography, with therein references included, is presented owing to the contribution of the author groups to Mitochondrial Filamentation, which is a new emerging field of physiological energy metabolism. These studies provide the first seed concept for trials to extend the metabolic life, for a few days, in low order laboratory mammals killed by electrocution, as a first type of accidental death. It is proposed, essentially, to cool out the corpses very soon after death at 12oC-14oC and take advantage of the effect super magnetism to counteract the force of gravity to install a net recurrent cycle of oxygen consumption and oxygen production by filamented mitochondria in all the organism tissues. Once the cause of death had been corrected adequately, it is possible to try the reanimation to experience the full life of the corpse with highly sophisticated methodology.展开更多
Introduction: Radiotherapy is often used to treat head and neck malignancies, with inevitable effects on the surrounding healthy tissues. We have reviewed the literature concerning the experimental irradiation of faci...Introduction: Radiotherapy is often used to treat head and neck malignancies, with inevitable effects on the surrounding healthy tissues. We have reviewed the literature concerning the experimental irradiation of facial bones in animals. Materials and Methods: A PubMed search was performed to retrieve animal experiments on the irradiation of facial bones that were published between January 1992 and January 2012. The search terms were “irradiation facial bone” and “irradiation osteoradionecrosis”. Results: Thirty-six publications were included. The irradiation sources were Cobalt60, orthovoltage, 4 - 6 megavolt photons, and brachytherapy. The total dose varied between 8 - 60 Gy in single or multiple fractions. The literature presents a broad range of animal studies that differ in terms of the in vivo model, irradiation, observation period, and evaluation of results. Discussion: The different animal models used leave many questions unanswered. A detailed and standardized description of the methodology and results would facilitate the comparability of future studies.展开更多
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s...Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.展开更多
Objective To investigate the effect of hyperbarci oxygen(HBO) on recovery of nerves injury in rats suffered from acute organophosphorus poisoning. Method We established organophosphorus poisoning models and observed e...Objective To investigate the effect of hyperbarci oxygen(HBO) on recovery of nerves injury in rats suffered from acute organophosphorus poisoning. Method We established organophosphorus poisoning models and observed effect of HBO on recovery of injure nerves. Results Compared with control group, cerebrospinal fluid induced peak potential and incubation period in HBO group were significantly recovered(P<0.05).HBO could accelerated repair of injured nerves. Conclusion HBO could relieve injury of nerves during treatment of organophosphorus poisoning.展开更多
Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pat...Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis,a traditional experimental model of multiple sclerosis.This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis.We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type,as shown by reduced expression of inducible nitric oxide synthase/nitric oxide,interleukin-12,and CD16/32 and increased expression of arginase-1,interleukin-10,CD14,and CD206,which was linked to inhibition of Rho kinase activity,decreased expression of toll-like receptors,nuclear factor-κB,and components of the mitogen-activated protein kinase signaling pathway,and generation of the pro-inflammatory cytokines tumor necrosis factor-α,interleukin-1β,and interleukin-6.Crucially,Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis,resulting in later onset of disease,lower symptom scores,less weight loss,and reduced demyelination compared with unmodified macrophages.In addition,Fasudil-modified macrophages decreased interleukin-17 expression on CD4^(+)T cells and CD16/32,inducible nitric oxide synthase,and interleukin-12 expression on F4/80^(+)macrophages,as well as increasing interleukin-10 expression on CD4^(+)T cells and arginase-1,CD206,and interleukin-10 expression on F4/80^(+)macrophages,which improved immune regulation and reduced inflammation.These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response,thereby providing new insight into cell immunotherapy for multiple sclerosis.展开更多
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundar...The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundary effect is conducted,where the hydraulic head difference(DH)varies,and the boundary includes non-loss and soil-loss conditions.Soil samples are filled into seven soil storerooms connected in turn.After evaluation,the variation in content of fine sand(ΔR_(f))and the hydraulic conductivity of soils in each storeroom(C_(i))are analyzed.In the non-loss test,the soil sample filling area is divided into runoff,transited,and accumulated areas according to the negative or positive ΔR_(f) values.ΔR_(f) increases from negative to positive along the seepage path,and Ci decreases from runoff area to transited area and then rebounds in accumulated area.In the soil-loss test,all soil sample filling areas belong to the runoff area,where the gentle-loss,strengthened-loss,and alleviated-loss parts are further divided.ΔR_(f) decreases from the gentle-loss part to the strengthened-loss part and then rebounds in the alleviated-loss part,and C_(i) increases and then decreases along the seepage path.The relationship between ΔR_(f) and Ci is different with the boundary condition.Ci exponentially decreases with ΔR_(f) in the non-loss test and increases with ΔR_(f) generally in the soil-loss test.展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearing...Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.展开更多
Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well ...Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.展开更多
The sugarcane field excitation,cutting forces and the engine excitation constitute complicated excitations acting on sugarcane harvesters.In this study,the sugarcane cutting mechanism under complicated excitations was...The sugarcane field excitation,cutting forces and the engine excitation constitute complicated excitations acting on sugarcane harvesters.In this study,the sugarcane cutting mechanism under complicated excitations was analyzed.The dynamics and the mathematical models of sugarcane harvesters were established and simulated.Based on theoretical analysis,sugarcane cutting experiments were done on a self-built sugarcane harvester test platform(SHTP),designed as single-factor and the orthogonal experiments.Effects of the sugarcane field excitation characterized by the sugarcane field excitation device(SFED)output frequency,the engine excitation characterized by the actuating engine output frequency,the cutter rotating speed,the sugarcane harvester travelling speed simulated through the sugarcane transporting speed of the SHTP and the cutter inclination angle on the cutting quality of sugarcane harvesters were studied.Effects of the axial cutter vibration on three-directional cutting forces and the sugarcane cutting quality(SCQ)as well as effects of three-directional cutting forces on the SCQ were further studied.It is shown that the sugarcane field excitation,the axial cutter vibration amplitude and frequency as well as the three-directional cutting forces have significantly negative monotonic correlated effects on the SCQ while the cutter rotating speed,the sugarcane harvester travelling speed and the cutter inclination angle have significantly positive monotonic correlated effects on the SCQ.Significance levels of effects on three-directional cutting forces and the SCQ form high to low are as follow,the axial cutter vibration,the sugarcane field excitation,the cutter rotating speed,the engine excitation,the cutter inclination angle,the sugarcane harvester travelling speed.The theoretical analysis results were verified through experiment and an optimal combination was obtained with the cutter rotating speed of 700 r/min,sugarcane harvester travelling speed of 0.6 m/s and cutter inclination angle of 8º.This study can provide a reference for setting cutting parameters of sugarcane harvesters with a good SCQ.展开更多
This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The h...This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The hydrodynamic characteristics of this breakwater are analyzed through analytical potential solutions and experimental tests.The quadratic pressure drop conditions are exerted on the horizontal perforated plates to facilitate assessing the effect of wave height on the dissipated wave energy of breakwater through the analytical solution.The hydrodynamic quantities of the breakwater,including the reflection,transmission,and energyloss coefficients,together with vertical and horizontal wave forces,are calculated using the velocity potential decomposition method as well as an iterative algorithm.Furthermore,the reflection and transmission coefficients of the breakwater are measured by conducting experimental tests at various wave periods,wave heights,and both porosities and widths of the horizontal perforated plates.The analytical predicted results demonstrate good agreement with the iterative boundary element method solution and measured data.The influences of variable incident waves and structure parameters on the hydrodynamic characteristics of the breakwater are investigated through further calculations based on analytical solutions.Results indicate that horizontal perforated plates placed on the water surface for both sides of the rectangular breakwater can enhance the wave dissipation ability of the breakwater while effectively decreasing the transmission and reflection coefficients.展开更多
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime...To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.展开更多
Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency ...Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.展开更多
Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium cond...Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°.展开更多
Gastric cancer(GC)remains a formidable global health concern with significant morbidity and mortality rates,despite the fact that numerous advances have been made to improve conventional therapies.Xiaojianzhong decoct...Gastric cancer(GC)remains a formidable global health concern with significant morbidity and mortality rates,despite the fact that numerous advances have been made to improve conventional therapies.Xiaojianzhong decoction(XJZ),a traditional Chinese medicine,has garnered academic attention as a multicomponent,multitarget approach to managing GC.The present editorial explores the potential of XJZ in the treatment of GC through a comprehensive analysis of network pharmacology and experimental validation.Network pharmacology was used to identify key molecular targets of XJZ,including interleukin 6,prostaglandin-endoperoxide synthase 2,and matrix metalloproteinase 9,and in vitro experiments were used to confirm the efficacy of XJZ in inhibiting cell proliferation,inducing apoptosis,and modulating gene expression associated with GC progression.This editorial highlights XJZ as a promising therapeutic strategy for GC and indicates a need for further clinical exploration and validation of its efficacy.展开更多
A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin...A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.展开更多
With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improv...With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit.展开更多
文摘Preparation of the temporal bone for light microscopy is an important step in histological studies of the inner ear. Due to the complexity of structures of the inner ear, it is difficult to measure or compare structures of interest without a commonly accepted standardized measure of temporal bone sections. Therefore, standardization of temporal bone sections is very important for histological assessment of sensory hair cells and peripheral ganglion neurons in the cochlear and vestibular systems. The standardized temporal bone sectioning is oriented to a plane parallel to the outer and internal auditory canals. Sections are collected from the epitympanum to the hypotympanum to reveal layers in the order of the crista ampullaris of the superior and lateral semicircular canals, macula utriculi and macula sacculi, superior vestibular ganglion neurons, macula of saccule and inferior vestibular ganglion neurons, cochlear modiolus, endolymphatic duct and endolymphatic sac, and finally the crista ampullaris of the posterior semicircular canal. Moreover, technical details of preparing for temporal bone sectioning including fixation, decalcification, whole temporal bone staining, embedding penetration, and embedding orientation are also discussed.
文摘Objectives: To assess the genotoxic effect of a new antitumor ozone-photodynamic therapy using the improvedmodification of the COMET assay. Methods: Xenograft cancer models on 58 rats were used. The sarcoma RA was transplantedsubcutaneously, and after increasing of tumor volume from 0.5 to 4.2 cm3, rats were divided into the four groups: "Intact"--healthy,"Control"--with xenografted tumors and no treatment, "PDT"--the rats treated with the photodynamic therapy, "PDT +ozone"--the rats were treated with both photodynamic therapy and injections of ozonated saline solution. The toxicity of treatmentwas assessed by DNA damage in leukocytes using the new modification of the COMET assay. The analysis of the "COMETs" wasperformed following the percentage of DNA in the tail of the "COMET" (% TDNA). Results: A combination of PDT and ozonemakes the strongest negative impact on tumor growth. The tumor growth inhibition is associated with low genotoxic exposure ofozone-photodynamic therapy on whole blood leukocytes of cancer rats. Conclusions: A new modification of the COMET assay canprovide the assessment of the genotoxic effect of the antitumor therapy in experimental neoplasia.
文摘Essential bibliography, with therein references included, is presented owing to the contribution of the author groups to Mitochondrial Filamentation, which is a new emerging field of physiological energy metabolism. These studies provide the first seed concept for trials to extend the metabolic life, for a few days, in low order laboratory mammals killed by electrocution, as a first type of accidental death. It is proposed, essentially, to cool out the corpses very soon after death at 12oC-14oC and take advantage of the effect super magnetism to counteract the force of gravity to install a net recurrent cycle of oxygen consumption and oxygen production by filamented mitochondria in all the organism tissues. Once the cause of death had been corrected adequately, it is possible to try the reanimation to experience the full life of the corpse with highly sophisticated methodology.
文摘Introduction: Radiotherapy is often used to treat head and neck malignancies, with inevitable effects on the surrounding healthy tissues. We have reviewed the literature concerning the experimental irradiation of facial bones in animals. Materials and Methods: A PubMed search was performed to retrieve animal experiments on the irradiation of facial bones that were published between January 1992 and January 2012. The search terms were “irradiation facial bone” and “irradiation osteoradionecrosis”. Results: Thirty-six publications were included. The irradiation sources were Cobalt60, orthovoltage, 4 - 6 megavolt photons, and brachytherapy. The total dose varied between 8 - 60 Gy in single or multiple fractions. The literature presents a broad range of animal studies that differ in terms of the in vivo model, irradiation, observation period, and evaluation of results. Discussion: The different animal models used leave many questions unanswered. A detailed and standardized description of the methodology and results would facilitate the comparability of future studies.
基金supported by the National Natural Science Foundation of China (Nos.21701083 and 22179054).
文摘Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.
文摘Objective To investigate the effect of hyperbarci oxygen(HBO) on recovery of nerves injury in rats suffered from acute organophosphorus poisoning. Method We established organophosphorus poisoning models and observed effect of HBO on recovery of injure nerves. Results Compared with control group, cerebrospinal fluid induced peak potential and incubation period in HBO group were significantly recovered(P<0.05).HBO could accelerated repair of injured nerves. Conclusion HBO could relieve injury of nerves during treatment of organophosphorus poisoning.
基金supported by a grant from the Department of Science and Technology of Shanxi Province,China,No.20210302123477(to CL)Datong Bureau of Science and Technology of China,No.2020152(to CL)the Opening Foundation of Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine,No.2022-KF-03(to CL).
文摘Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis,a traditional experimental model of multiple sclerosis.This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis.We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type,as shown by reduced expression of inducible nitric oxide synthase/nitric oxide,interleukin-12,and CD16/32 and increased expression of arginase-1,interleukin-10,CD14,and CD206,which was linked to inhibition of Rho kinase activity,decreased expression of toll-like receptors,nuclear factor-κB,and components of the mitogen-activated protein kinase signaling pathway,and generation of the pro-inflammatory cytokines tumor necrosis factor-α,interleukin-1β,and interleukin-6.Crucially,Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis,resulting in later onset of disease,lower symptom scores,less weight loss,and reduced demyelination compared with unmodified macrophages.In addition,Fasudil-modified macrophages decreased interleukin-17 expression on CD4^(+)T cells and CD16/32,inducible nitric oxide synthase,and interleukin-12 expression on F4/80^(+)macrophages,as well as increasing interleukin-10 expression on CD4^(+)T cells and arginase-1,CD206,and interleukin-10 expression on F4/80^(+)macrophages,which improved immune regulation and reduced inflammation.These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response,thereby providing new insight into cell immunotherapy for multiple sclerosis.
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.
基金The research work described herein was funded by the National Nature Science Foundation of China(Grant No.41877213).This financial support is gratefully acknowledged.
文摘The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundary effect is conducted,where the hydraulic head difference(DH)varies,and the boundary includes non-loss and soil-loss conditions.Soil samples are filled into seven soil storerooms connected in turn.After evaluation,the variation in content of fine sand(ΔR_(f))and the hydraulic conductivity of soils in each storeroom(C_(i))are analyzed.In the non-loss test,the soil sample filling area is divided into runoff,transited,and accumulated areas according to the negative or positive ΔR_(f) values.ΔR_(f) increases from negative to positive along the seepage path,and Ci decreases from runoff area to transited area and then rebounds in accumulated area.In the soil-loss test,all soil sample filling areas belong to the runoff area,where the gentle-loss,strengthened-loss,and alleviated-loss parts are further divided.ΔR_(f) decreases from the gentle-loss part to the strengthened-loss part and then rebounds in the alleviated-loss part,and C_(i) increases and then decreases along the seepage path.The relationship between ΔR_(f) and Ci is different with the boundary condition.Ci exponentially decreases with ΔR_(f) in the non-loss test and increases with ΔR_(f) generally in the soil-loss test.
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.
基金Supported by National Key Research and Development Program of China (Grant No.2021YFF0600208)National Natural Science Foundation of China (Grant No.52005170)Hunan Provincial Science and Technology Innovation Program of China (Grant No.2020RC4018)。
文摘Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.
基金financial support received from the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (Grant No.Z019011)the Shandong Provincial Natural Science Foundation (Grant No.ZR2020QE112)+1 种基金the National Natural Science Foundation of China (No.51874273)the Excellent Young Scientists Fund Program of National Natural Science Foundation of China (No.52122403)。
文摘Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.
基金supported by the Middle-aged and Young Teachers'Basic Scientific Research Ability Promotion Project of Guangxi Universities,China(Grant No.2023KY0701)Wuzhou University Research Foundation for Advanced Talents,China(Grant No.WZUQDJJ17195)+13 种基金Key University-level Scientific Research Project of Wuzhou University,China(Grant No.2020B003)Middle-aged and Young Teachers'Basic Scientific Research Ability Promotion Project of Guangxi Universities,China(Grant No.2024KY0697)Wuzhou University Research Foundation for Advanced Talents,China(Grant No.WZUQDJJ17179)Major Special Project of Guangxi Sugarcane Science and Technology in the 14th Five-year Plan,China(Grant No.2022AA01010)the general program of the National Natural Science Foundation Project,China(Grant No.32071916)a horizontal technical service project of the Zhenkang Professor Workstation,Yunnan,Chinathe Double First-class Discipline Construction Project:Mechanized sugarcane harvesting equipment development of Zhenkang,Yunnan,Chinathe first universitydirectlyunder-Education-Ministry-served innovative rural revitalization test project:the China-Agricultural-University-served innovative Bangdong Village revitalization test plan,mechanizedsugarcaneharvesting assistant rural revitalization in hilly areas,Zhenkang,Yunnan,Chinathe Portable Sugarcane Harvester Research and Development,China(Grant No.NK2022160504)the 2115 Talent Development Program of China Agricultural UniversityGuangxi Science and Technology Project,China(Grant No.Guike AA22117007)Guangxi Science and Technology Project,China(Grant No.Guike AA22117005)Guangxi Special Project of Science Technology Bases and Talents,China(Grant No.Guike AD23026033)the Opening Project of Guangxi Key Laboratory of Advanced Microwave Manufacturing Technology,China(Grant No.2024GKLAMMTKFKT001).
文摘The sugarcane field excitation,cutting forces and the engine excitation constitute complicated excitations acting on sugarcane harvesters.In this study,the sugarcane cutting mechanism under complicated excitations was analyzed.The dynamics and the mathematical models of sugarcane harvesters were established and simulated.Based on theoretical analysis,sugarcane cutting experiments were done on a self-built sugarcane harvester test platform(SHTP),designed as single-factor and the orthogonal experiments.Effects of the sugarcane field excitation characterized by the sugarcane field excitation device(SFED)output frequency,the engine excitation characterized by the actuating engine output frequency,the cutter rotating speed,the sugarcane harvester travelling speed simulated through the sugarcane transporting speed of the SHTP and the cutter inclination angle on the cutting quality of sugarcane harvesters were studied.Effects of the axial cutter vibration on three-directional cutting forces and the sugarcane cutting quality(SCQ)as well as effects of three-directional cutting forces on the SCQ were further studied.It is shown that the sugarcane field excitation,the axial cutter vibration amplitude and frequency as well as the three-directional cutting forces have significantly negative monotonic correlated effects on the SCQ while the cutter rotating speed,the sugarcane harvester travelling speed and the cutter inclination angle have significantly positive monotonic correlated effects on the SCQ.Significance levels of effects on three-directional cutting forces and the SCQ form high to low are as follow,the axial cutter vibration,the sugarcane field excitation,the cutter rotating speed,the engine excitation,the cutter inclination angle,the sugarcane harvester travelling speed.The theoretical analysis results were verified through experiment and an optimal combination was obtained with the cutter rotating speed of 700 r/min,sugarcane harvester travelling speed of 0.6 m/s and cutter inclination angle of 8º.This study can provide a reference for setting cutting parameters of sugarcane harvesters with a good SCQ.
基金supported by the National Natural Sci-ence Foundation of China(Nos.52201345,and 52001293)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The hydrodynamic characteristics of this breakwater are analyzed through analytical potential solutions and experimental tests.The quadratic pressure drop conditions are exerted on the horizontal perforated plates to facilitate assessing the effect of wave height on the dissipated wave energy of breakwater through the analytical solution.The hydrodynamic quantities of the breakwater,including the reflection,transmission,and energyloss coefficients,together with vertical and horizontal wave forces,are calculated using the velocity potential decomposition method as well as an iterative algorithm.Furthermore,the reflection and transmission coefficients of the breakwater are measured by conducting experimental tests at various wave periods,wave heights,and both porosities and widths of the horizontal perforated plates.The analytical predicted results demonstrate good agreement with the iterative boundary element method solution and measured data.The influences of variable incident waves and structure parameters on the hydrodynamic characteristics of the breakwater are investigated through further calculations based on analytical solutions.Results indicate that horizontal perforated plates placed on the water surface for both sides of the rectangular breakwater can enhance the wave dissipation ability of the breakwater while effectively decreasing the transmission and reflection coefficients.
文摘To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2022C03170)Science and Technology Project of Quzhou(Grant No.2022K98)Hunan Province Key Field R&D Plan Project(Grant No.2022GK2068).
文摘Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.
基金supported by Research on the Influence of Nozzle Structure on the Scouring Effect of Submerged Water Jet(2023R411045)Design and Control Strategy Research of PEM Fuel Cell Hybrid Propulsion System for Ships(2024R411015)+1 种基金Zhejiang Ocean University Outstanding Master’s Thesis Cultivation Project(ZJOUYJS20230018)General Program of Education Department of Zhejiang Province(Y202250817)which was gained by Chen.
文摘Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°.
文摘Gastric cancer(GC)remains a formidable global health concern with significant morbidity and mortality rates,despite the fact that numerous advances have been made to improve conventional therapies.Xiaojianzhong decoction(XJZ),a traditional Chinese medicine,has garnered academic attention as a multicomponent,multitarget approach to managing GC.The present editorial explores the potential of XJZ in the treatment of GC through a comprehensive analysis of network pharmacology and experimental validation.Network pharmacology was used to identify key molecular targets of XJZ,including interleukin 6,prostaglandin-endoperoxide synthase 2,and matrix metalloproteinase 9,and in vitro experiments were used to confirm the efficacy of XJZ in inhibiting cell proliferation,inducing apoptosis,and modulating gene expression associated with GC progression.This editorial highlights XJZ as a promising therapeutic strategy for GC and indicates a need for further clinical exploration and validation of its efficacy.
基金supported in part by the Nation Natural Science Foundation of China under Grant No.52175099China Postdoctoral Science Foundation under Grant No.2020M671494Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No.2020Z179。
文摘A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.
基金supported by National Natural Science Foundation of China(Nos.51476073,51266004)Natural Science Foundation of Gansu Province(No.138RJZA199).
文摘With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit.