期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Confined Two-peaked Solar Flare Observed by EAST and SDO
1
作者 Liang Zhang Ruisheng Zheng +6 位作者 Zhike Xue Changhui Rao Qing Lin Zhimao Du Jiawen Yao Libo Zhong Yao Chen 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期71-83,共13页
The solar flare is one of the most violent explosions,and can disturb the near-Earth space weather.Except for commonly single-peaked solar flares in soft X-ray,some special flares show intriguing a two-peak feature th... The solar flare is one of the most violent explosions,and can disturb the near-Earth space weather.Except for commonly single-peaked solar flares in soft X-ray,some special flares show intriguing a two-peak feature that is deserved much more attentions.Here,we reported a confined two-peaked solar flare and analyzed the associated eruptions using high-quality observations from Educational Adaptive-optics Solar Telescope and Solar Dynamics Observatory.Before the flare,a magnetic flux rope(MFR)formed through partially tether-cutting reconnection between two sheared arches.The flare occurred after the MFR eruption that was confined by the overlying strong field.Interestingly,a small underlying filament immediately erupted,which was possibly destabilized by the flare ribbon.The successive eruptions were confirmed by the analysis of the emission measure and the reconnection fluxes.Therefore,we suggest that the two peaks of the confined solar flare are corresponding to two episodes of magnetic reconnection during the successive eruptions of the MFR and the underlying filament. 展开更多
关键词 Sun:activity Sun:corona Sun:flares Sun:magnetic fields Sun:filaments prominences Online material:animations
下载PDF
The Precursor Phase of an X-class Flare: Magnetic Reconnection, Powering and Non-thermal Electrons
2
作者 Jinhua Shen Haisheng Ji Yingna Su 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2022年第1期205-214,共10页
In this paper,we report three interesting phenomena that occurred during the precursor phase of the X1.6 class flare on 2014 September 10.(1) The magnetic reconnection initiating the flare occurs between one of the tw... In this paper,we report three interesting phenomena that occurred during the precursor phase of the X1.6 class flare on 2014 September 10.(1) The magnetic reconnection initiating the flare occurs between one of the two J-shaped magnetic flux ropes that constitute a sigmoidal structure and the overlying sheared magnetic arcade that runs across the sigmoid over its middle part.The reconnection formed an erupting structure that ultimately leads to flare onset.Another J-shaped magnetic flux rope remains unaffected during the whole eruption.The phenomenon is revealed by the observation made by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory(SDO)at 94 and 131 A.(2) Being simultaneously with starting time of the precursor,photospheric vertical electric current(VEC) around the footpoint region of the overlying magnetic arcade underwent an obvious increase,as observed by the Helioseismic and Magnetic Imager(HMI) on board SDO.By only taking into account the VEC with current density over 3σ value(1σ:10 mA m^(-2)),we are able to pick out precursor-associated VEC increase starting from nearly the level of zero.We regard it as a kind of powering process for the magnetic reconnection between the two magnetic loops.(3) With high-resolution narrow-band Helium 10830 A images taken by Goode Solar Telescope at Big Bear Solar Observatory(BBSO),we observe a narrow absorption(dark) front that runs along the erupting magnetic structure(or the erupting hot channel) and moves in the direction of the eruption during the precursor phase.Assuming the excitation mechanism of Helium atoms along the absorption front by non-thermal electrons,the phenomenon shows that the interaction between the erupted hot channel and the overlying(or surrounding)magnetic field has yielded electron acceleration. 展开更多
关键词 magnetic reconnection Sun:flares Sun:magnetic fields Online material:animation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部