The exchange behaviors of WO_4 ̄(2-) MoO_4 ̄(2-), H_2 W_(12) O_(40) ̄(6-) and Mo8 O_(26) ̄(4-) anions within macrOPorous exchange resin (D290) phases have been studied.The values of diffusion constant (B), inner diffu...The exchange behaviors of WO_4 ̄(2-) MoO_4 ̄(2-), H_2 W_(12) O_(40) ̄(6-) and Mo8 O_(26) ̄(4-) anions within macrOPorous exchange resin (D290) phases have been studied.The values of diffusion constant (B), inner diffusion coefficient (D), retarted time (td) half - exchange-period (t1/2), and activation energy (△E) were found from the kinetic analyses. A new method to separate W(Ⅵ) and Mo (Ⅵ) from each other was also suggested.展开更多
Aim To study the exchange reaction characteristics of anion exchange resin for diclofenac sodium. Methods The drug-resin complexes were prepared by a batch method with diclofenac sodium as the model drug and the stron...Aim To study the exchange reaction characteristics of anion exchange resin for diclofenac sodium. Methods The drug-resin complexes were prepared by a batch method with diclofenac sodium as the model drug and the strong anion exchange resin (201 × 7) as the carrier. The effects of different forms (OH~ - and Cl~ - ) of the strong anion exchange resin, the particle size of the resin, and the reaction temperature on the exchange behavior were described. The exchange kinetic profiles were fitted. The related exc...展开更多
Sulfate mass transfer coefficient(MTC) is a sensitive parameter to evaluate the kinetic leakage of anion exchange resin used in condensate polishing system of thermal and nuclear power plant.However,a sufficiently pre...Sulfate mass transfer coefficient(MTC) is a sensitive parameter to evaluate the kinetic leakage of anion exchange resin used in condensate polishing system of thermal and nuclear power plant.However,a sufficiently precise determination method has not been well established.In this paper,the final expression of sulfate MTC derived based on plug flow reactor model is the same as Harries' model,which is widely acknowledged in this field.In the determining system we constructed,in-situ calibration of the concentration of sulfate and its cation conductivity was conducted and sulfate MTCs of four typical strongly basic anion exchange resin samples were determined.The systematic error is 8.26% and the calibrated curve used for quantifying sulfate is obtained.The repeatability and reproducibility standard deviation are 0.05×10^(-4) m·s^(-1) and 0.07×10^(-4) m·s^(-1) respectively,which are lower than previous works.By controlling test condition accurately,this study has developed a more precise sulfate MTC determining method.This method provides a basis for further research.展开更多
Magnetic anion exchange resin (MD-1) was prepared from quaternization of magnetic copolymeric resin (glycidyl methacry- late-co-divinylbenzene). For comparison, magnetic resin MD-0 without quaternization and non-m...Magnetic anion exchange resin (MD-1) was prepared from quaternization of magnetic copolymeric resin (glycidyl methacry- late-co-divinylbenzene). For comparison, magnetic resin MD-0 without quaternization and non-magnetic resin (D-l) were also synthesized for the adsorption process. It was found that the adsorption was mainly contributed to the chemical interaction between quaternary ammonium groups and reactive blue RXHC. Due to the smaller size, MD- 1 had faster adsorption and desorption kinetics than D-1. Coupled with the advantage of easy separation, the magnetic anion exchange resin was considered to be superior to common anion exchange resin in removal of reactive dye.展开更多
Two novel weakly basic anion exchange resins(SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene(Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respect...Two novel weakly basic anion exchange resins(SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene(Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid(BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution p H, temperature and coexisting competitive inorganic salts(Na2SO4and Na Cl) on adsorption behavior were investigated and the optimum desorption agent was obtained.Adsorption isotherms of BA were found to be well represented by the Langmuir model.Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by Na Cl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1for potential industrial application.展开更多
文摘The exchange behaviors of WO_4 ̄(2-) MoO_4 ̄(2-), H_2 W_(12) O_(40) ̄(6-) and Mo8 O_(26) ̄(4-) anions within macrOPorous exchange resin (D290) phases have been studied.The values of diffusion constant (B), inner diffusion coefficient (D), retarted time (td) half - exchange-period (t1/2), and activation energy (△E) were found from the kinetic analyses. A new method to separate W(Ⅵ) and Mo (Ⅵ) from each other was also suggested.
文摘Aim To study the exchange reaction characteristics of anion exchange resin for diclofenac sodium. Methods The drug-resin complexes were prepared by a batch method with diclofenac sodium as the model drug and the strong anion exchange resin (201 × 7) as the carrier. The effects of different forms (OH~ - and Cl~ - ) of the strong anion exchange resin, the particle size of the resin, and the reaction temperature on the exchange behavior were described. The exchange kinetic profiles were fitted. The related exc...
文摘Sulfate mass transfer coefficient(MTC) is a sensitive parameter to evaluate the kinetic leakage of anion exchange resin used in condensate polishing system of thermal and nuclear power plant.However,a sufficiently precise determination method has not been well established.In this paper,the final expression of sulfate MTC derived based on plug flow reactor model is the same as Harries' model,which is widely acknowledged in this field.In the determining system we constructed,in-situ calibration of the concentration of sulfate and its cation conductivity was conducted and sulfate MTCs of four typical strongly basic anion exchange resin samples were determined.The systematic error is 8.26% and the calibrated curve used for quantifying sulfate is obtained.The repeatability and reproducibility standard deviation are 0.05×10^(-4) m·s^(-1) and 0.07×10^(-4) m·s^(-1) respectively,which are lower than previous works.By controlling test condition accurately,this study has developed a more precise sulfate MTC determining method.This method provides a basis for further research.
基金support provided by the State Key Program of National Natural Science(No.50938004)the National Nature Science Fund for Distinguished Young Scientists(No.50825802)+1 种基金Jiangsu Nature Science Fund(No.BK2010006)the Resources Key Subject of National High Technology Research & Development Project(No.2009AA06Z315 and SQ2009AA06XK1482331),China
文摘Magnetic anion exchange resin (MD-1) was prepared from quaternization of magnetic copolymeric resin (glycidyl methacry- late-co-divinylbenzene). For comparison, magnetic resin MD-0 without quaternization and non-magnetic resin (D-l) were also synthesized for the adsorption process. It was found that the adsorption was mainly contributed to the chemical interaction between quaternary ammonium groups and reactive blue RXHC. Due to the smaller size, MD- 1 had faster adsorption and desorption kinetics than D-1. Coupled with the advantage of easy separation, the magnetic anion exchange resin was considered to be superior to common anion exchange resin in removal of reactive dye.
基金supported by the National Natural Science Foundation of China(No.51578131)the Natural Science Foundation of Jiangsu Province,China(No.BK20131287)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Two novel weakly basic anion exchange resins(SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene(Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid(BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution p H, temperature and coexisting competitive inorganic salts(Na2SO4and Na Cl) on adsorption behavior were investigated and the optimum desorption agent was obtained.Adsorption isotherms of BA were found to be well represented by the Langmuir model.Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by Na Cl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1for potential industrial application.