Two organobentonites were synthesized by placing quaternary ammonium cationscetyltrimethylammonium bromide (CTMAB) and cetylpyridinium chloride (CPC) on bentonite bycation exchange. Their ability to adsorb phenol, ani...Two organobentonites were synthesized by placing quaternary ammonium cationscetyltrimethylammonium bromide (CTMAB) and cetylpyridinium chloride (CPC) on bentonite bycation exchange. Their ability to adsorb phenol, aniline. nitrobenzene and p-nitrophenol were examined.The optimal conditions for organobentonites to remove the organic pollutants from waterwere studied. The removal rates for organobentonites to treat the organic compounds in water werefound to be over 8 times for the original mineral (untreated bentonite).The removal rates of organic pollutants and COD of wastewater were further improved by organobentonites in the presence of aluminum sulfate. The structure of organobentonites and the mechanism for their adsorption were investigated by X-ray diffraction (XRD) analysis, infrared spectra and BET surface area.展开更多
The sorption behavior of polar or ionizable organic compounds, such as p nitrophenol, phenol and aniline, in the water/organobentonite systems is investigated. Both adsorption and partition occur to the sorption ...The sorption behavior of polar or ionizable organic compounds, such as p nitrophenol, phenol and aniline, in the water/organobentonite systems is investigated. Both adsorption and partition occur to the sorption of organic compounds to dual cation organobentonites. The separate contributions of adsorption and partition to the total sorption of organic compounds to dual cation organobentonites are analyzed mathematically in the first time. The factors to the contributions are also discussed. The results indicated that the contribution of adsorption and partition is related to the composition and ratio of dual cation surfactants exchanging onto the bentonite. The sorption of organic compounds to dual cation organobentonite is dominated by adsorption at low concentrations and by partition at high concentrations, making the organobentonites powerful sorbents for organic contaminants over wide range of concentrations.展开更多
Developing of high-performance and low-cost electrocatalysts is of great significance to reduce the overpotential and accelerated the reaction rate of oxygen evolution in water splitting and related energy conversion ...Developing of high-performance and low-cost electrocatalysts is of great significance to reduce the overpotential and accelerated the reaction rate of oxygen evolution in water splitting and related energy conversion applications.Herein,Fe,O-dual doped Ni2P(Fe,O-Ni2P)nanoarray is successfully synthesized on carbon cloth demonstrating enhanced electrocatalytic activity and stability for oxygen evolution reaction(OER)under alkaline media.The as-synthesized Fe,O-Ni2P nanoarray exhibits obviously improved OER performance with a low overpotential of 210 mV at 10 mA cm^-2 current density and a Tafel slope of48 mV dec^-1,as well as long-term durability.The strong coupling interaction induced changes in electronic structure lead to relatively higher oxidation state and stronger oxidation ability of the Fe,O-Ni2P nanoarray,together with the high electrochemical surface area and good conductivity contribute to the superior OER performance.This work highlights the anion-cation dual doping strategy may be an effective method for fabrication of catalysts relating to energy conversion applications.展开更多
Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit...Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.展开更多
文摘Two organobentonites were synthesized by placing quaternary ammonium cationscetyltrimethylammonium bromide (CTMAB) and cetylpyridinium chloride (CPC) on bentonite bycation exchange. Their ability to adsorb phenol, aniline. nitrobenzene and p-nitrophenol were examined.The optimal conditions for organobentonites to remove the organic pollutants from waterwere studied. The removal rates for organobentonites to treat the organic compounds in water werefound to be over 8 times for the original mineral (untreated bentonite).The removal rates of organic pollutants and COD of wastewater were further improved by organobentonites in the presence of aluminum sulfate. The structure of organobentonites and the mechanism for their adsorption were investigated by X-ray diffraction (XRD) analysis, infrared spectra and BET surface area.
基金TheNationalNaturalScienceFoundationofChina (No .2 97770 0 5 ) andtheNationalScienceFoundationofZhejiangProvince (No .RC990 32 )
文摘The sorption behavior of polar or ionizable organic compounds, such as p nitrophenol, phenol and aniline, in the water/organobentonite systems is investigated. Both adsorption and partition occur to the sorption of organic compounds to dual cation organobentonites. The separate contributions of adsorption and partition to the total sorption of organic compounds to dual cation organobentonites are analyzed mathematically in the first time. The factors to the contributions are also discussed. The results indicated that the contribution of adsorption and partition is related to the composition and ratio of dual cation surfactants exchanging onto the bentonite. The sorption of organic compounds to dual cation organobentonite is dominated by adsorption at low concentrations and by partition at high concentrations, making the organobentonites powerful sorbents for organic contaminants over wide range of concentrations.
基金financial support from the National Science Foundation of China(51671094,21606189)China Postdoctoral Science Foundation(2017M612174)+1 种基金Shandong Provincial Natural Science Foundation(ZR2015BQ011)the Science and Technology Project of University of Jinan(XKY1826)。
文摘Developing of high-performance and low-cost electrocatalysts is of great significance to reduce the overpotential and accelerated the reaction rate of oxygen evolution in water splitting and related energy conversion applications.Herein,Fe,O-dual doped Ni2P(Fe,O-Ni2P)nanoarray is successfully synthesized on carbon cloth demonstrating enhanced electrocatalytic activity and stability for oxygen evolution reaction(OER)under alkaline media.The as-synthesized Fe,O-Ni2P nanoarray exhibits obviously improved OER performance with a low overpotential of 210 mV at 10 mA cm^-2 current density and a Tafel slope of48 mV dec^-1,as well as long-term durability.The strong coupling interaction induced changes in electronic structure lead to relatively higher oxidation state and stronger oxidation ability of the Fe,O-Ni2P nanoarray,together with the high electrochemical surface area and good conductivity contribute to the superior OER performance.This work highlights the anion-cation dual doping strategy may be an effective method for fabrication of catalysts relating to energy conversion applications.
基金the financial support from the National Natural Science Foundation of China(51972156,52072378,52102054 and 51927803)the National Key R&D Program of China(2022YFB3803400,2021YFB3800301)+2 种基金the Shenyang Science and Technology Program(22-322-3-19)the Youth Fund of the Education Department of Liaoning Province(LJKQZ20222324)the Outstanding Youth Fund of University of Science and Technology Liaoning(2023YQ11).
文摘Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.