The oxygen evolution reaction(OER) plays a crucial role in many electrochemical energy technologies,and creating multiple beneficial factors for OER catalysis is desirable for achieving high catalytic efficiency.Here,...The oxygen evolution reaction(OER) plays a crucial role in many electrochemical energy technologies,and creating multiple beneficial factors for OER catalysis is desirable for achieving high catalytic efficiency.Here,we highlight a new halogen-chlorine(Cl)-anion doping strategy to boost the OER activity of perovskite oxides.As a proof-of-concept,proper Cl doping at the oxygen site of LaFeO3(LFO) perovskite can induce multiple favorable characteristics for catalyzing the OER,including rich oxygen vacancies,increased electrical conductivity and enhanced Fe-O covalency.Benefiting from these factors,the LaFeO2.9-δCl0.1(LFOCl) perovskite displays significant intrinsic activity enhancement by a factor of around three relative to its parent LFO.This work uncovers the effect of Cl-anion doping in perovskites on promoting OER performance and paves a new way to design highly efficient electrocatalysts.展开更多
Nowadays,the majority of the studies on the substitution are focused on cations(such as Y^(3+),Ti^(4+),P^(5+),etc.)in Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP),while there are few studies on the substitution of anion...Nowadays,the majority of the studies on the substitution are focused on cations(such as Y^(3+),Ti^(4+),P^(5+),etc.)in Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP),while there are few studies on the substitution of anion O^(2-).In this work,the modified LATP with a series of LiCl(LATPClx,x=0.1,0.2,0.3,0.4)additives is prepared to enhance ionic conductivity.The successful introduction of Cl-makes the length of the c axis decrease from 20.822(2)to 20.792(1)Å,and the bulk conductivity of 2.13×10^(-3) S·cm^(-1) is achieved in LATPCl_(0.3).Moreover,the Al/Ti-O1/Cl1 and Al/Ti-O_(2)/Cl_(2) distance decrease,while the Li1-O_(2)/Cl_(2) distance increases.Lithium ions migrate more easily in the nanochannel of M3-M1-M3.In addition,the LiCl additive increases the relative density and the grain boundary conductivity of LATPClx compounds.Naturally,a higher ionic conductivity of 2.12×10^(–4) S·cm^(-1) and a low activation energy of 0.30 eV are obtained in LATPCl_(0.3).Correspondingly,the symmetric cell exhibits a low overpotential of±50 mV for over 200 h in LATPCl_(0.3).The solid-state Li|LATPCl_(0.3)|NCM811(NCM811=LiNi0.8Co0.1Mn0.1O_(2))battery exhibits high initial capacity 185.1 mAh·g^(-1) with a capacity retention rate of 95.4%after 100 cycles at 0.5 C.This result suggests that LiCl additive is an effective strategy to promote electrochemical properties of LATP solid electrolyte and can be considered for reference to other inorganic solid electrolytes systems.展开更多
Oxide semimetals exhibiting both nontrivial topological characteristics stand as exemplary parent compounds and multiple degrees of freedom,offering a promise for the realization of novel electronic states.In this wor...Oxide semimetals exhibiting both nontrivial topological characteristics stand as exemplary parent compounds and multiple degrees of freedom,offering a promise for the realization of novel electronic states.In this work,we report the structural and transport phase transition in an oxide semimetal,SrNbO_(3),achieved through effective anion doping.Notably,the resistivity increased by more than three orders of magnitude at room temperature upon nitrogendoping.The extent of electronic modulation in SrNbO_(3)is strongly correlated with misfit strain,underscoring its phase instability to both chemical doping and crystallographic symmetry variations.Using first-principles calculations,we discern that elevating the level of nitrogen doping induces an upward shift in the conductive bands of SrNbO_(3−δ)N_(δ).Consequently,a transition from a metallic state to an insulating state becomes apparent as the nitrogen concentration reaches a threshold of 1/3.This investigation shows effective anion engineering in oxide semimetals,offering pathways for manipulating their physical properties.展开更多
Three types of TiO2 nanostructures were synthesized via a facile hydrolysis method at195 °C. Effects of the preparation method and doping with N and F on the crystal structure and photocatalytic performance of Ti...Three types of TiO2 nanostructures were synthesized via a facile hydrolysis method at195 °C. Effects of the preparation method and doping with N and F on the crystal structure and photocatalytic performance of TiO2 were investigated. The nanomaterials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller porosimetry, ultraviolet–visible diffuse reflectance spectroscopy and fluorescent emission spectra. Their photo-catalytic activity was examined by the photodegradation of methylene blue in aqueous solution under both ultra-violet and visible light irradiation. The results show that nitrogen and fluorine co-doped anatase TiO2 had the characteristics of a smaller crystalline size, broader light absorption spectrum and lower charge recombination than pure TiO2. Most importantly, more efficient photocatalytic activity under both ultra-violet and visible light was observed. The obtained N–F-TiO2 nanomaterial shows considerable potential for water treatment under sunlight irradiation.展开更多
The rate-determining process for sodium storage in TiO2 is greatly depending on charge transfer happening in the electrode materials owing to its inferior diffusion coefficient and electronic conductivity.Apart from r...The rate-determining process for sodium storage in TiO2 is greatly depending on charge transfer happening in the electrode materials owing to its inferior diffusion coefficient and electronic conductivity.Apart from reducing the diffusion distance of ion/electron,the increasement of ionic/electronic mobility in the crystal lattice is also very important for charge transport.Here,an oxygen vacancy(OV)engineering assisted in high-content anion(S/Se/P)doping strategy to enhance charge transfer kinetics for ultrafast sodium-storage performance is proposed.Theoretical calculations indicate that OV-engineering evokes spontaneous S doping into the TiO2 phase and achieves high dopant concentration to bring about impurity state electron donor and electronic delocalization over S occupied sites,which can largely reduce the migration barrier of Na+.To realize the speculation,high-content anion doped anatase TiO2/C composites(9.82 at%for S in A-TiO2–x-S/C)are elaborately designed.The optimized A-TiO2–x-S/C anode exhibits extraordinarily high-rate capability with 209.6 mAh g-1at 5000 mA g-1.The assembled sodium ion capacitors deliver an ultrahigh energy density of 150.1 Wh kg-1at a power density of 150 W kg-1when applied as anode materials.This work provides a new strategy to realize high content anion doping concentration,and enhances the charge transfer kinetics for TiO2,which delivers an efficient approach for the design of electrode materials with fast kinetic.展开更多
基金financially supported by the Australian Research Council (Discovery Early Career Researcher Award No. DE190100005)the support of the Australian Research Council (Grant No. FT160100207)the ontinued support from the Queensland University of Technology (QUT) through the centre for Materials Science。
文摘The oxygen evolution reaction(OER) plays a crucial role in many electrochemical energy technologies,and creating multiple beneficial factors for OER catalysis is desirable for achieving high catalytic efficiency.Here,we highlight a new halogen-chlorine(Cl)-anion doping strategy to boost the OER activity of perovskite oxides.As a proof-of-concept,proper Cl doping at the oxygen site of LaFeO3(LFO) perovskite can induce multiple favorable characteristics for catalyzing the OER,including rich oxygen vacancies,increased electrical conductivity and enhanced Fe-O covalency.Benefiting from these factors,the LaFeO2.9-δCl0.1(LFOCl) perovskite displays significant intrinsic activity enhancement by a factor of around three relative to its parent LFO.This work uncovers the effect of Cl-anion doping in perovskites on promoting OER performance and paves a new way to design highly efficient electrocatalysts.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.51772239,51972262 and 22005186)the 111 Project(No.B14040).
文摘Nowadays,the majority of the studies on the substitution are focused on cations(such as Y^(3+),Ti^(4+),P^(5+),etc.)in Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP),while there are few studies on the substitution of anion O^(2-).In this work,the modified LATP with a series of LiCl(LATPClx,x=0.1,0.2,0.3,0.4)additives is prepared to enhance ionic conductivity.The successful introduction of Cl-makes the length of the c axis decrease from 20.822(2)to 20.792(1)Å,and the bulk conductivity of 2.13×10^(-3) S·cm^(-1) is achieved in LATPCl_(0.3).Moreover,the Al/Ti-O1/Cl1 and Al/Ti-O_(2)/Cl_(2) distance decrease,while the Li1-O_(2)/Cl_(2) distance increases.Lithium ions migrate more easily in the nanochannel of M3-M1-M3.In addition,the LiCl additive increases the relative density and the grain boundary conductivity of LATPClx compounds.Naturally,a higher ionic conductivity of 2.12×10^(–4) S·cm^(-1) and a low activation energy of 0.30 eV are obtained in LATPCl_(0.3).Correspondingly,the symmetric cell exhibits a low overpotential of±50 mV for over 200 h in LATPCl_(0.3).The solid-state Li|LATPCl_(0.3)|NCM811(NCM811=LiNi0.8Co0.1Mn0.1O_(2))battery exhibits high initial capacity 185.1 mAh·g^(-1) with a capacity retention rate of 95.4%after 100 cycles at 0.5 C.This result suggests that LiCl additive is an effective strategy to promote electrochemical properties of LATP solid electrolyte and can be considered for reference to other inorganic solid electrolytes systems.
基金CAS Project for Young Scientists in Basic Research,Grant/Award Number:YSBR‐084China Postdoctoral Science Foundation,Grant/Award Number:2022M723353+4 种基金Jiangsu Funding Program for Excellent Postdoctoral TalentStrategic Priority Research Program(B)of the Chinese Academy of Sciences,Grant/Award Number:XDB33030200National Natural Science Foundation of China,Grant/Award Numbers:11974390,U22A20263,52250308,12347185National Key Basic Research Program of China,Grant/Award Numbers:2020YFA0309100,2019YFA0308500Postdoctoral Fellowship Program of CPSF,Grant/Award Number:GZC20230443。
文摘Oxide semimetals exhibiting both nontrivial topological characteristics stand as exemplary parent compounds and multiple degrees of freedom,offering a promise for the realization of novel electronic states.In this work,we report the structural and transport phase transition in an oxide semimetal,SrNbO_(3),achieved through effective anion doping.Notably,the resistivity increased by more than three orders of magnitude at room temperature upon nitrogendoping.The extent of electronic modulation in SrNbO_(3)is strongly correlated with misfit strain,underscoring its phase instability to both chemical doping and crystallographic symmetry variations.Using first-principles calculations,we discern that elevating the level of nitrogen doping induces an upward shift in the conductive bands of SrNbO_(3−δ)N_(δ).Consequently,a transition from a metallic state to an insulating state becomes apparent as the nitrogen concentration reaches a threshold of 1/3.This investigation shows effective anion engineering in oxide semimetals,offering pathways for manipulating their physical properties.
基金financially supported by the Natural Science Foundation of China (No. 51376110)the Natural Science Foundation of Shandong Province (No. ZR2012BQ027)+2 种基金the Program for Youth Science and Technology Star Fund of Jinan (No. 20120123)the Excellent Young Scientist Foundation of Shandong Province (No. BS2011CL005)the Science Development Project of Shandong Provincial (No. 2014GGX104004)
文摘Three types of TiO2 nanostructures were synthesized via a facile hydrolysis method at195 °C. Effects of the preparation method and doping with N and F on the crystal structure and photocatalytic performance of TiO2 were investigated. The nanomaterials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller porosimetry, ultraviolet–visible diffuse reflectance spectroscopy and fluorescent emission spectra. Their photo-catalytic activity was examined by the photodegradation of methylene blue in aqueous solution under both ultra-violet and visible light irradiation. The results show that nitrogen and fluorine co-doped anatase TiO2 had the characteristics of a smaller crystalline size, broader light absorption spectrum and lower charge recombination than pure TiO2. Most importantly, more efficient photocatalytic activity under both ultra-violet and visible light was observed. The obtained N–F-TiO2 nanomaterial shows considerable potential for water treatment under sunlight irradiation.
基金supported by the National Key Research and Development Program of China(2019YFC1907805)the National Natural Science Foundation of China(52004338)+1 种基金Hunan Provincial Natural Science Foundation(2020JJ5696)Guangdong Provincial Department of Natural Resources(2020-011)。
文摘The rate-determining process for sodium storage in TiO2 is greatly depending on charge transfer happening in the electrode materials owing to its inferior diffusion coefficient and electronic conductivity.Apart from reducing the diffusion distance of ion/electron,the increasement of ionic/electronic mobility in the crystal lattice is also very important for charge transport.Here,an oxygen vacancy(OV)engineering assisted in high-content anion(S/Se/P)doping strategy to enhance charge transfer kinetics for ultrafast sodium-storage performance is proposed.Theoretical calculations indicate that OV-engineering evokes spontaneous S doping into the TiO2 phase and achieves high dopant concentration to bring about impurity state electron donor and electronic delocalization over S occupied sites,which can largely reduce the migration barrier of Na+.To realize the speculation,high-content anion doped anatase TiO2/C composites(9.82 at%for S in A-TiO2–x-S/C)are elaborately designed.The optimized A-TiO2–x-S/C anode exhibits extraordinarily high-rate capability with 209.6 mAh g-1at 5000 mA g-1.The assembled sodium ion capacitors deliver an ultrahigh energy density of 150.1 Wh kg-1at a power density of 150 W kg-1when applied as anode materials.This work provides a new strategy to realize high content anion doping concentration,and enhances the charge transfer kinetics for TiO2,which delivers an efficient approach for the design of electrode materials with fast kinetic.
基金supported by the National Natural Science Foundation of China(U2032154)the Key Research and Development Program of Anhui(202004a05020072)+1 种基金Anhui Initiative in Quantum Information Technologies(AHY100000)Anhui Provincial Natural Science Foundation(1908085ME119)。