Let p∈(0, 1], q∈(0, ∞] and A be a general expansive matrix on Rn. Let HAp,q (Rn) be the anisotropic Hardy-Lorentz spaces associated with A defined via the non-tangential grand maximal function. In this article,...Let p∈(0, 1], q∈(0, ∞] and A be a general expansive matrix on Rn. Let HAp,q (Rn) be the anisotropic Hardy-Lorentz spaces associated with A defined via the non-tangential grand maximal function. In this article, the authors characterize HAp,q(Rn) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley gλ*-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(Rn). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on Rn. Moreover, the range of λ in the gλ*-function characterization of HAp,q (Rn) coincides with the best known one in the classical Hardy space Hp(Rn) or in the anisotropic Hardy space HAp (Rn).展开更多
We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and...We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.展开更多
We extend the Equivalence Theory (ET) formulated by Absi [1] for the statics of isotropic materials to the statics and dynamics of orthotropic materials. That theory relies on the assumption that any real body mod- el...We extend the Equivalence Theory (ET) formulated by Absi [1] for the statics of isotropic materials to the statics and dynamics of orthotropic materials. That theory relies on the assumption that any real body mod- eling may be substituted by another one that, even though it may possibly have material constitutive laws and geometric properties with no physical sense (like negative cross sections or Young modulus), is intended to be more advantageous for calculus. In our approach, the equivalence is expressed by equating both the effective strain energies of the two models and the material structural weights in dynamics [2]. We provide a numerical analysis of the convergence properties of ET approach while comparing its numerical results with those predicted by the analytical theory and the Finite Elements Method for thin plates.展开更多
Pure,pseudo and semi membrane theories may sound similar but totally different theories as well as its behavior.The differences are more significant when it comes to hybrid anisotropic materials,namely laminated shell...Pure,pseudo and semi membrane theories may sound similar but totally different theories as well as its behavior.The differences are more significant when it comes to hybrid anisotropic materials,namely laminated shell wall thickness.The nomenclatures and classifications have been existed centuries for isotropic material shells since Donnell and Vlasov era.The methods of formulation of the theories are unique and never been used by others except by the authors.Governing differential equations are uniquely formulated for each theory by use of asymptotic expansion method which has never been used by others for isotropic or anisotropic materials.Longitudinal(L)and circumferential(Πor l)length scale were introduced during the course of asymptotic expansion method and the different theories among membrane theory are apparently classified.Characteristic behaviors of each theory are shown.展开更多
In the presentmanuscript,a Layer-Wise(LW)generalizedmodel is proposed for the linear static analysis of doublycurved shells constrained with general boundary conditions under the influence of concentrated and surface ...In the presentmanuscript,a Layer-Wise(LW)generalizedmodel is proposed for the linear static analysis of doublycurved shells constrained with general boundary conditions under the influence of concentrated and surface loads.The unknown field variable is modelled employing polynomials of various orders,each of them defined within each layer of the structure.As a particular case of the LW model,an Equivalent Single Layer(ESL)formulation is derived too.Different approaches are outlined for the assessment of external forces,as well as for non-conventional constraints.The doubly-curved shell is composed by superimposed generally anisotropic laminae,each of them characterized by an arbitrary orientation.The fundamental governing equations are derived starting from an orthogonal set of principal coordinates.Furthermore,generalized blending functions account for the distortion of the physical domain.The implementation of the fundamental governing equations is performed bymeans of the Generalized Differential Quadrature(GDQ)method,whereas the numerical integrations are computed employing theGeneralized IntegralQuadrature(GIQ)method.In the post-processing phase,an effective procedure is adopted for the reconstruction of stress and strain through-the-thickness distributions based on the exact fulfillment of three-dimensional equilibrium equations.A series of systematic investigations are performed in which the static response of structures with various curvatures and lamination schemes,calculated by the present methodology,have been successfully compared to those ones obtained fromrefined finite element three-dimensional simulations.Even though the present LW approach accounts for a two-dimensional assessment of the structural problem,it is capable of well predicting the three-dimensional response of structures with different characteristics,taking into account a reduced computational cost and pretending to be a valid alternative to widespread numerical implementations.展开更多
In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible...In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible, and so the anisolropic hardening model has been suggested. From the comparison between the calculated and experimental results in this paper, we can see that even the linear kinematic hardening model is quite suitable for strain analysis under cyclic loading.展开更多
We propose a method for mOdeling azimuthal AVO responses from a fractured i reflector. The method calculates the integrated reflected wavetrains, and the wavetrains contain elastodynamic information including the con...We propose a method for mOdeling azimuthal AVO responses from a fractured i reflector. The method calculates the integrated reflected wavetrains, and the wavetrains contain elastodynamic information including the contrast in impedance and anelasticity i across interfaces, the intemal anisotropic propagation, the dispersion and attenuation along i the wave path, and tuning and interference. The results suggest that for large angles of incidence, the velocity dispersion and attenuation increase the amplitudes of PP waves from the top and decrease those from the bottom. For azimuthal responses at specific angles of incidence, the reflected wavetrains of PP waves tend to have longer duration with increasing azimuth. In contrast, model-converted PSV and PSH reflections show stable azimuthal features and are less affected by the reflector thickness. The amplitudes of PSV reflections increase with increasing azimuth; moreover, the waves have no reflection energy at 0° and 90° azimuth and maximum amplitude at 45° azimuth.展开更多
The influences of the anisotropy of the outer spherically anisotropic (SA) layer on the far-field spectra and near- field enhancements of the silver nanoshells are investigated by using a modified Mie scattering the...The influences of the anisotropy of the outer spherically anisotropic (SA) layer on the far-field spectra and near- field enhancements of the silver nanoshells are investigated by using a modified Mie scattering theory. It is found that with the increase of the anisotropic value of the SA layer, the dipole resonance wavelength of the silver nanoshell first increases and then decreases, while the local field factor (LFF) reduces. With the decrease of SA layer thickness, the dipole wavelength of the silver nanoshell shows a distinct blue-shift. When the SA layer becomes very thin, the modulations of the anisotropy of the SA layer on the plasmon resonance energy and the near-field enhancement are weakened. We further find that the smaller anisotropic value of the SA layer is helpful for obtaining the larger near-field enhancement in the Ag nanoshell. The geometric average of the dielectric components of the SA layer has a stronger effect on the plasmon resonance energy of the silver nanoshell than on the near-field enhancement.展开更多
We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard m...We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.展开更多
The goal of this article is to provide a lower bound for the lifespan of smooth solutions to 3-D anisotropic incompressible Navier-Stokes system,which in particular extends a similar type of result for the classical 3...The goal of this article is to provide a lower bound for the lifespan of smooth solutions to 3-D anisotropic incompressible Navier-Stokes system,which in particular extends a similar type of result for the classical 3-D incompressible Navier-S tokes system.展开更多
By applying the perturbation method and the complex-source-point theory, the theoretical research of measurement of complex permittivity of uniaxial anisotropic materials by means of an electromagnetic open resonator ...By applying the perturbation method and the complex-source-point theory, the theoretical research of measurement of complex permittivity of uniaxial anisotropic materials by means of an electromagnetic open resonator has been made, and the double refraction phenomenon due to anisotropy of measured dielectric materials has been quantitatively analyzed. Finally, measurements have been made on some single-crystal quartz specimens using an automated open resonator measurement system at 8mm band.展开更多
We consider a nonlinear Robin problem driven by the anisotropic(p,q)-Laplacian and with a reaction exhibiting the competing effects of a parametric sublinear(concave) term and of a superlinear(convex) term.We prove a ...We consider a nonlinear Robin problem driven by the anisotropic(p,q)-Laplacian and with a reaction exhibiting the competing effects of a parametric sublinear(concave) term and of a superlinear(convex) term.We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter varies.We also prove the existence of a minimal positive solution and determine the monotonicity and continuity properties of the minimal solution map.展开更多
Let H be a Schroedinger operator on R^n. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We fur...Let H be a Schroedinger operator on R^n. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We further give a Littlewood-Paley characterization of Lp spaces in terms of dyadic functions of H. This generalizes and strengthens the previous result when the heat kernel of H satisfies certain upper Gaussian bound.展开更多
The Littlewood-Paley and Marcinkiewicz's multiplier theorems on the quan- tum torus are established. An key ingredient of the proof is vector-valued Littlewood-Paley and noncommutative Khinchin's inequalities.
The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the...The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates.The generalized blendingmethodology accounts for a distortion of the structure so that disparate geometries can be considered.Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum.In addition,re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model.The unknown variables are described employing a generalized displacement field and pre-determined through-the-thickness functions assessed in a unified formulation.Then,a weak assessment of the structural problem accounts for shape functions defined with an isogeometric approach starting fromthe computational grid.Ageneralizedmethodology has been proposed to define two-dimensional distributions of static surface loads.In the same way,boundary conditions with three-dimensional features are implemented along the shell edges employing linear springs.The fundamental relations are obtained from the stationary configuration of the total potential energy,and they are numerically tackled by employing the Generalized Differential Quadrature(GDQ)method,accounting for nonuniform computational grids.In the post-processing stage,an equilibrium-based recovery procedure allows the determination of the three-dimensional dispersion of the kinematic and static quantities.Some case studies have been presented,and a successful benchmark of different structural responses has been performed with respect to various refined theories.展开更多
Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolatio...Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.展开更多
In the present study, the effect of the exchange-correlation functional on the structural, mechanical, and optoelectronic properties of orthorhombic RbSrBr3 perovskite has been investigated using various functionals i...In the present study, the effect of the exchange-correlation functional on the structural, mechanical, and optoelectronic properties of orthorhombic RbSrBr3 perovskite has been investigated using various functionals in Density Functional Theory (DFT) with the CASTEP code. The optimized lattice parameters are quite similar for all the functionals. The electronic properties have shown that RbSrBr3 perovskite is a wide direct band gap compound with a band gap energy ranging from 4.296 eV to 4.494 eV for all the functionals. The mechanical parameters like elastic constants, Young’s modulus, Shear modulus, Poisson’s ratio, Pugh’s ratio, and an anisotropic factor reveal that the RbSrBr3 perovskite has ductile behavior and an anisotropic nature which signifies the mechanical stability of the compound. The Debye temperature might withstand lattice vibration heat. High absorption coefficient (>104 cm−1), high optical conductivity, and very low reflectivity have been found in the RbSrBr3 perovskite for all functions. The computed findings on the RbSrBr3 perovskite suggested that the presented studied material is potentially applicable for photodetector and optoelectronic devices.展开更多
基金supported by the National Natural Science Foundation of China(11571039 and 11671185)supported by the National Natural Science Foundation of China(11471042)
文摘Let p∈(0, 1], q∈(0, ∞] and A be a general expansive matrix on Rn. Let HAp,q (Rn) be the anisotropic Hardy-Lorentz spaces associated with A defined via the non-tangential grand maximal function. In this article, the authors characterize HAp,q(Rn) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley gλ*-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(Rn). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on Rn. Moreover, the range of λ in the gλ*-function characterization of HAp,q (Rn) coincides with the best known one in the classical Hardy space Hp(Rn) or in the anisotropic Hardy space HAp (Rn).
基金supported by the National Natural Science Foundation of China(11571132,12301542)the Natural Science Foundation of Hubei(2022CFB725)the Natural Science Foundation of Yichang(A23-2-027)。
文摘We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.
文摘We extend the Equivalence Theory (ET) formulated by Absi [1] for the statics of isotropic materials to the statics and dynamics of orthotropic materials. That theory relies on the assumption that any real body mod- eling may be substituted by another one that, even though it may possibly have material constitutive laws and geometric properties with no physical sense (like negative cross sections or Young modulus), is intended to be more advantageous for calculus. In our approach, the equivalence is expressed by equating both the effective strain energies of the two models and the material structural weights in dynamics [2]. We provide a numerical analysis of the convergence properties of ET approach while comparing its numerical results with those predicted by the analytical theory and the Finite Elements Method for thin plates.
文摘Pure,pseudo and semi membrane theories may sound similar but totally different theories as well as its behavior.The differences are more significant when it comes to hybrid anisotropic materials,namely laminated shell wall thickness.The nomenclatures and classifications have been existed centuries for isotropic material shells since Donnell and Vlasov era.The methods of formulation of the theories are unique and never been used by others except by the authors.Governing differential equations are uniquely formulated for each theory by use of asymptotic expansion method which has never been used by others for isotropic or anisotropic materials.Longitudinal(L)and circumferential(Πor l)length scale were introduced during the course of asymptotic expansion method and the different theories among membrane theory are apparently classified.Characteristic behaviors of each theory are shown.
文摘In the presentmanuscript,a Layer-Wise(LW)generalizedmodel is proposed for the linear static analysis of doublycurved shells constrained with general boundary conditions under the influence of concentrated and surface loads.The unknown field variable is modelled employing polynomials of various orders,each of them defined within each layer of the structure.As a particular case of the LW model,an Equivalent Single Layer(ESL)formulation is derived too.Different approaches are outlined for the assessment of external forces,as well as for non-conventional constraints.The doubly-curved shell is composed by superimposed generally anisotropic laminae,each of them characterized by an arbitrary orientation.The fundamental governing equations are derived starting from an orthogonal set of principal coordinates.Furthermore,generalized blending functions account for the distortion of the physical domain.The implementation of the fundamental governing equations is performed bymeans of the Generalized Differential Quadrature(GDQ)method,whereas the numerical integrations are computed employing theGeneralized IntegralQuadrature(GIQ)method.In the post-processing phase,an effective procedure is adopted for the reconstruction of stress and strain through-the-thickness distributions based on the exact fulfillment of three-dimensional equilibrium equations.A series of systematic investigations are performed in which the static response of structures with various curvatures and lamination schemes,calculated by the present methodology,have been successfully compared to those ones obtained fromrefined finite element three-dimensional simulations.Even though the present LW approach accounts for a two-dimensional assessment of the structural problem,it is capable of well predicting the three-dimensional response of structures with different characteristics,taking into account a reduced computational cost and pretending to be a valid alternative to widespread numerical implementations.
文摘In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible, and so the anisolropic hardening model has been suggested. From the comparison between the calculated and experimental results in this paper, we can see that even the linear kinematic hardening model is quite suitable for strain analysis under cyclic loading.
基金sponsored by the National Natural Science Foundation of China(under Grant Nos.41404090 and U1262208
文摘We propose a method for mOdeling azimuthal AVO responses from a fractured i reflector. The method calculates the integrated reflected wavetrains, and the wavetrains contain elastodynamic information including the contrast in impedance and anelasticity i across interfaces, the intemal anisotropic propagation, the dispersion and attenuation along i the wave path, and tuning and interference. The results suggest that for large angles of incidence, the velocity dispersion and attenuation increase the amplitudes of PP waves from the top and decrease those from the bottom. For azimuthal responses at specific angles of incidence, the reflected wavetrains of PP waves tend to have longer duration with increasing azimuth. In contrast, model-converted PSV and PSH reflections show stable azimuthal features and are less affected by the reflector thickness. The amplitudes of PSV reflections increase with increasing azimuth; moreover, the waves have no reflection energy at 0° and 90° azimuth and maximum amplitude at 45° azimuth.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.10904052,11174113,and 11104319)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds,China(Grant No.1002075C)the Senior Talent Foundation of Jiangsu University,China(Grant No.09JDG073)
文摘The influences of the anisotropy of the outer spherically anisotropic (SA) layer on the far-field spectra and near- field enhancements of the silver nanoshells are investigated by using a modified Mie scattering theory. It is found that with the increase of the anisotropic value of the SA layer, the dipole resonance wavelength of the silver nanoshell first increases and then decreases, while the local field factor (LFF) reduces. With the decrease of SA layer thickness, the dipole wavelength of the silver nanoshell shows a distinct blue-shift. When the SA layer becomes very thin, the modulations of the anisotropy of the SA layer on the plasmon resonance energy and the near-field enhancement are weakened. We further find that the smaller anisotropic value of the SA layer is helpful for obtaining the larger near-field enhancement in the Ag nanoshell. The geometric average of the dielectric components of the SA layer has a stronger effect on the plasmon resonance energy of the silver nanoshell than on the near-field enhancement.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174169,11234007,and 51471093)
文摘We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.
基金S.Liang is grateful to the financial supports of the DFG through IRTG 2235.R Zhang is partially supported by NSF of China under Grants 11371347 and 11688101,and innovation grant from National Center for Mathematics and Interdisciplinary Sciences.。
文摘The goal of this article is to provide a lower bound for the lifespan of smooth solutions to 3-D anisotropic incompressible Navier-Stokes system,which in particular extends a similar type of result for the classical 3-D incompressible Navier-S tokes system.
基金Supported by the Doctoral Fbundation of the State Education Commission of China
文摘By applying the perturbation method and the complex-source-point theory, the theoretical research of measurement of complex permittivity of uniaxial anisotropic materials by means of an electromagnetic open resonator has been made, and the double refraction phenomenon due to anisotropy of measured dielectric materials has been quantitatively analyzed. Finally, measurements have been made on some single-crystal quartz specimens using an automated open resonator measurement system at 8mm band.
基金supported by NNSF of China(12071413)NSF of Guangxi(2018GXNSFDA138002)。
文摘We consider a nonlinear Robin problem driven by the anisotropic(p,q)-Laplacian and with a reaction exhibiting the competing effects of a parametric sublinear(concave) term and of a superlinear(convex) term.We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter varies.We also prove the existence of a minimal positive solution and determine the monotonicity and continuity properties of the minimal solution map.
文摘Let H be a Schroedinger operator on R^n. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We further give a Littlewood-Paley characterization of Lp spaces in terms of dyadic functions of H. This generalizes and strengthens the previous result when the heat kernel of H satisfies certain upper Gaussian bound.
文摘The Littlewood-Paley and Marcinkiewicz's multiplier theorems on the quan- tum torus are established. An key ingredient of the proof is vector-valued Littlewood-Paley and noncommutative Khinchin's inequalities.
文摘The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates.The generalized blendingmethodology accounts for a distortion of the structure so that disparate geometries can be considered.Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum.In addition,re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model.The unknown variables are described employing a generalized displacement field and pre-determined through-the-thickness functions assessed in a unified formulation.Then,a weak assessment of the structural problem accounts for shape functions defined with an isogeometric approach starting fromthe computational grid.Ageneralizedmethodology has been proposed to define two-dimensional distributions of static surface loads.In the same way,boundary conditions with three-dimensional features are implemented along the shell edges employing linear springs.The fundamental relations are obtained from the stationary configuration of the total potential energy,and they are numerically tackled by employing the Generalized Differential Quadrature(GDQ)method,accounting for nonuniform computational grids.In the post-processing stage,an equilibrium-based recovery procedure allows the determination of the three-dimensional dispersion of the kinematic and static quantities.Some case studies have been presented,and a successful benchmark of different structural responses has been performed with respect to various refined theories.
基金the National Nutural Science Foundation of China(Grant Nos.10771198,10590353)
文摘Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.
文摘In the present study, the effect of the exchange-correlation functional on the structural, mechanical, and optoelectronic properties of orthorhombic RbSrBr3 perovskite has been investigated using various functionals in Density Functional Theory (DFT) with the CASTEP code. The optimized lattice parameters are quite similar for all the functionals. The electronic properties have shown that RbSrBr3 perovskite is a wide direct band gap compound with a band gap energy ranging from 4.296 eV to 4.494 eV for all the functionals. The mechanical parameters like elastic constants, Young’s modulus, Shear modulus, Poisson’s ratio, Pugh’s ratio, and an anisotropic factor reveal that the RbSrBr3 perovskite has ductile behavior and an anisotropic nature which signifies the mechanical stability of the compound. The Debye temperature might withstand lattice vibration heat. High absorption coefficient (>104 cm−1), high optical conductivity, and very low reflectivity have been found in the RbSrBr3 perovskite for all functions. The computed findings on the RbSrBr3 perovskite suggested that the presented studied material is potentially applicable for photodetector and optoelectronic devices.