We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobole...We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobolev class R(Wpr([0, 1]d)) (r R+d). Then combining this result with our previous one we determine the optimal bound of n-th minimal query error for anisotropic Hblder- Nikolskii class R(H∞r([0,1]d)) and Sobolev class R(W∞r([0,1]d)). The results show that for these two types of classes the quantum algorithms give significant speed up over classical deterministic and randomized algorithms.展开更多
This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic So...This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.展开更多
In this paper, we consider the problem of optimization of adaptive direct methods of operator equations. Adaptivity of a direct method is understood in the sense that the subspace on the basis of which it is construct...In this paper, we consider the problem of optimization of adaptive direct methods of operator equations. Adaptivity of a direct method is understood in the sense that the subspace on the basis of which it is constructed is chosen depending on the operator of the concrete equation (otherwise, nonadaptive direct method is then concerned), which would essentially let us increase the precision. For some classes of the second kind of Fredhlom integral equations with anisotropic smooth kernels we determine the exact order of the error of adaptive direct methods, and we also give an optimal algorithm.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos. 10501026 and 60675010)
文摘We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobolev class R(Wpr([0, 1]d)) (r R+d). Then combining this result with our previous one we determine the optimal bound of n-th minimal query error for anisotropic Hblder- Nikolskii class R(H∞r([0,1]d)) and Sobolev class R(W∞r([0,1]d)). The results show that for these two types of classes the quantum algorithms give significant speed up over classical deterministic and randomized algorithms.
基金Project supported by the Natural Science Foundation of China(10371009)Research Fund for the Doctoral Program Higher Education
文摘This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.
基金This work is supported by the Special Funds for Major State Basic Research Projects (Grant No. G19990328)the Zhejiang Provincial Natural Science Foundation (Grant No. 100002).
文摘In this paper, we consider the problem of optimization of adaptive direct methods of operator equations. Adaptivity of a direct method is understood in the sense that the subspace on the basis of which it is constructed is chosen depending on the operator of the concrete equation (otherwise, nonadaptive direct method is then concerned), which would essentially let us increase the precision. For some classes of the second kind of Fredhlom integral equations with anisotropic smooth kernels we determine the exact order of the error of adaptive direct methods, and we also give an optimal algorithm.