期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Alleviating the anisotropic microstructural change and boosting the lithium ions diffusion by grain orientation regulation for Ni-rich cathode materials
1
作者 Xinyou He Shilin Su +3 位作者 Bao Zhang Zhiming Xiao Zibo Zhang Xing Ou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期213-222,I0005,共11页
Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in t... Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in the properties of Ni-rich cathodes.The disordered particle arrangement is harmful to the cyclic performance and structural stability,yet the fundamental understanding of disordered structure on the structural degradation behavior is unclarified.Herein,we have designed three kinds of LiNi_(0.83)Co_(0.06)Mn_(0.11)O_(2) cathode materials with different primary particle orientations by regulating the precursor coprecipitation process.Combining finite element simulation and in-situ characterization,the Li^(+)transport and structure evolution behaviors of different materials are unraveled.Specifically,the smooth Li^(+)diffusion minimizes the reaction heterogeneity,homogenizes the phase transition within grains,and mitigates the anisotropic microstructural change,thereby modulating the crack evolution behavior.Meanwhile,the optimized structure evolution ensures radial tight junctions of the primary particles,enabling enhanced Li^(+)diffusion during dynamic processes.Closed-loop bidirectional enhancement mechanism becomes critical for grain orientation regulation to stabilize the cyclic performance.This precursor engineering with particle orientation regulation provides the useful guidance for the structural design and feature enhancement of Ni-rich layered cathodes. 展开更多
关键词 Ni-rich cathode Grain orientation regulation anisotropic microstructural change Precursor engineering Li~+-ions diffusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部