We study the two-dimensional weak-coupling Frohlich polaron in a completely anisotropic quantum dot in a perpendicular magnetic field. By performing a unitary transformation, we first transform the Hamiltonian into a ...We study the two-dimensional weak-coupling Frohlich polaron in a completely anisotropic quantum dot in a perpendicular magnetic field. By performing a unitary transformation, we first transform the Hamiltonian into a new one which describes an anisotropic harmonic oscillator with new mass and trapping frequencies interacting with the same phonon bath but with different interaction form and strength. Then employing the second-order Rayleigh–Schrodinger perturbation theory, we obtain the polaron correction to the ground-state energy. The magnetic field and anisotropic effects on the polaron correction to the ground-state energy are discussed.展开更多
We combine the maximum principle for vector-valued mappings established by D'Ottavio, Leonetti and Musciano [7] with regularity results from [5] and prove the Holder continuity of the first derivatives for local mini...We combine the maximum principle for vector-valued mappings established by D'Ottavio, Leonetti and Musciano [7] with regularity results from [5] and prove the Holder continuity of the first derivatives for local minimizers u: Ω→^R^N of splitting-type variational integrals provided Ω is a domain in R^2.展开更多
Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbi...Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbitrary shape in generally anisotropic piezoelectric bi-crystals. A simple formula for calculating the interaction energy of the interface dislocation loops is derived and given by a double line integral along two closed dislocation curves. Particularly, interactions between two straight segments of the interface dislocations are solved analytically, which can be applied to approximate any curved loop so that an analytical solution can be also achieved. Numerical results show the influence of the bi-crystal interface as well as the material orientation on the interaction of interface dislocation loops.展开更多
We propose an accurate and energy-stable parametric finite element method for solving the sharp-interface continuum model of solid-state dewetting in three-dimensional space.The model describes the motion of the film/...We propose an accurate and energy-stable parametric finite element method for solving the sharp-interface continuum model of solid-state dewetting in three-dimensional space.The model describes the motion of the film/vapor interface with contact line migration and is governed by the surface diffusion equation with proper boundary conditions at the contact line.We present a weak formulation for the problem,in which the contact angle condition is weakly enforced.By using piecewise linear elements in space and backward Euler method in time,we then discretize the formulation to obtain a parametric finite element approximation,where the interface and its contact line are evolved simultaneously.The resulting numerical method is shown to be well-posed and unconditionally energystable.Furthermore,the numerical method is generalized to the case of anisotropic surface energies in the Riemannian metric form.Numerical results are reported to show the convergence and efficiency of the proposed numerical method as well as the anisotropic effects on the morphological evolution of thin films in solid-state dewetting.展开更多
We propose a θ-L approach for solving a sharp-interface model about simulating solid-state dewetting of thin films with isotropic/weakly anisotropic surface energies.The sharp-interface model is governed by surface d...We propose a θ-L approach for solving a sharp-interface model about simulating solid-state dewetting of thin films with isotropic/weakly anisotropic surface energies.The sharp-interface model is governed by surface diffusion and contact line migration.For solving the model,traditional numerical methods usually suffer from the severe stability constraint and/or the mesh distribution trouble.In the θ-L approach,we introduce a useful tangential velocity along the evolving interface and utilize a new set of variables(i.e.,the tangential angle 6 and the total length L of the interface curve),so that it not only could reduce the stiffness resulted from the surface tension,but also could ensure the mesh equidistri-bution property during the evolution.Furthermore,it can achieve second-order accuracy when implemented by a semi-implicit linear finite element method.Numerical results are reported to demonstrate that the proposed θ-L approach is efficient and accurate.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11375090)the K.C.Wong Magna Foundation in Ningbo University,China
文摘We study the two-dimensional weak-coupling Frohlich polaron in a completely anisotropic quantum dot in a perpendicular magnetic field. By performing a unitary transformation, we first transform the Hamiltonian into a new one which describes an anisotropic harmonic oscillator with new mass and trapping frequencies interacting with the same phonon bath but with different interaction form and strength. Then employing the second-order Rayleigh–Schrodinger perturbation theory, we obtain the polaron correction to the ground-state energy. The magnetic field and anisotropic effects on the polaron correction to the ground-state energy are discussed.
文摘We combine the maximum principle for vector-valued mappings established by D'Ottavio, Leonetti and Musciano [7] with regularity results from [5] and prove the Holder continuity of the first derivatives for local minimizers u: Ω→^R^N of splitting-type variational integrals provided Ω is a domain in R^2.
基金supports from the National Natural Science Foundation of China(11402133 and 11502128)
文摘Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbitrary shape in generally anisotropic piezoelectric bi-crystals. A simple formula for calculating the interaction energy of the interface dislocation loops is derived and given by a double line integral along two closed dislocation curves. Particularly, interactions between two straight segments of the interface dislocations are solved analytically, which can be applied to approximate any curved loop so that an analytical solution can be also achieved. Numerical results show the influence of the bi-crystal interface as well as the material orientation on the interaction of interface dislocation loops.
基金supported by Singapore MOE grant MOE2019-T2-1-063(R-146-000-296-112)supported by the Singapore MOE grant R-146-000-285-114.
文摘We propose an accurate and energy-stable parametric finite element method for solving the sharp-interface continuum model of solid-state dewetting in three-dimensional space.The model describes the motion of the film/vapor interface with contact line migration and is governed by the surface diffusion equation with proper boundary conditions at the contact line.We present a weak formulation for the problem,in which the contact angle condition is weakly enforced.By using piecewise linear elements in space and backward Euler method in time,we then discretize the formulation to obtain a parametric finite element approximation,where the interface and its contact line are evolved simultaneously.The resulting numerical method is shown to be well-posed and unconditionally energystable.Furthermore,the numerical method is generalized to the case of anisotropic surface energies in the Riemannian metric form.Numerical results are reported to show the convergence and efficiency of the proposed numerical method as well as the anisotropic effects on the morphological evolution of thin films in solid-state dewetting.
基金This work was partially supported by the National Natural Science Foundation of China under Grant Nos.11871384(W.J.),12001034(W.H.),12001221(Y.W.),and 91630207(W.H.)the Fundamental Research Funds for the Central Universities under Grant CCNU19TD010(Y.W.)the Natural Science Foundation of Hubei Province under Grant Nos.2018CFB466(W.J.)and 2020CFB221(Y.W.).
文摘We propose a θ-L approach for solving a sharp-interface model about simulating solid-state dewetting of thin films with isotropic/weakly anisotropic surface energies.The sharp-interface model is governed by surface diffusion and contact line migration.For solving the model,traditional numerical methods usually suffer from the severe stability constraint and/or the mesh distribution trouble.In the θ-L approach,we introduce a useful tangential velocity along the evolving interface and utilize a new set of variables(i.e.,the tangential angle 6 and the total length L of the interface curve),so that it not only could reduce the stiffness resulted from the surface tension,but also could ensure the mesh equidistri-bution property during the evolution.Furthermore,it can achieve second-order accuracy when implemented by a semi-implicit linear finite element method.Numerical results are reported to demonstrate that the proposed θ-L approach is efficient and accurate.