Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical techniq...Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.展开更多
In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these t...In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.展开更多
This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mecha...This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.展开更多
A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is ...A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is interpreted briefly. As an example, the theorem is applied to solve the problem of thermo-force bending of a thick plate.展开更多
For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral f...For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral formula,the natural boundary integral equation for the boundary value problems of the biharmonic equation and the condition of bending moment in infinity,bending solutions under non-symmetrical loads are gained by the Fourier series and convolution formulae. The formula for the solutions has nicer convergence velocity and high computational accuracy, and the calculating process is simpler. Solutions of the given examples are compared with the finite element method. The textual solutions of moments near the loads are better than the finite element method to the fact that near the concentrative loads the inners forces trend to infinite.展开更多
The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi...The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.展开更多
Using the Green function, the boundary integral formula and natural boundary integral equation for thermal elastic problems are obtained. Then based on bending solutions to circular plates subjected to the non-axi- sy...Using the Green function, the boundary integral formula and natural boundary integral equation for thermal elastic problems are obtained. Then based on bending solutions to circular plates subjected to the non-axi- symmetrical load, by utilizing the Fourier series and convolution formulae, the bending solutions under non-axisymmetrical thermal conditions have been obtained. The calculating process is simple. Examples show the discussed methods are effective.展开更多
文摘Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.
文摘In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.
基金Project supported by the National Natural Science Foundation of China(Nos.12372086,12072374,and 12102485)。
文摘This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.
文摘A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is interpreted briefly. As an example, the theorem is applied to solve the problem of thermo-force bending of a thick plate.
基金Project supported by the National Basic Research Program of China (No. 2007CB209400)the National Nature Fond (No. 50774077 and 50774081)the National Fond of Author of Doctor Thesis (100760)
文摘For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral formula,the natural boundary integral equation for the boundary value problems of the biharmonic equation and the condition of bending moment in infinity,bending solutions under non-symmetrical loads are gained by the Fourier series and convolution formulae. The formula for the solutions has nicer convergence velocity and high computational accuracy, and the calculating process is simpler. Solutions of the given examples are compared with the finite element method. The textual solutions of moments near the loads are better than the finite element method to the fact that near the concentrative loads the inners forces trend to infinite.
文摘The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.
文摘Using the Green function, the boundary integral formula and natural boundary integral equation for thermal elastic problems are obtained. Then based on bending solutions to circular plates subjected to the non-axi- symmetrical load, by utilizing the Fourier series and convolution formulae, the bending solutions under non-axisymmetrical thermal conditions have been obtained. The calculating process is simple. Examples show the discussed methods are effective.