期刊文献+
共找到579篇文章
< 1 2 29 >
每页显示 20 50 100
Anisotropism of the Non-Smooth Surface of Butterfly Wing 被引量:10
1
作者 Gang Sun~(1,2), Yan Fang~(1,2), Qian Cong~1, Lu-quan Ren~11. Key Laboratory of Terrain-Machine Bionics Engineering (Ministry of Education, China), Jilin University,Changchun 130022, P. R. China2. School of Life Science, Changchun Normal University, Changchun 130032, P. R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第1期71-76,共6页
Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a ScanningElectron Microscope(SEM).Butterfly wing surface displays structural anisotropism in micro-,submi... Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a ScanningElectron Microscope(SEM).Butterfly wing surface displays structural anisotropism in micro-,submicro- and nano-scales.Thescales on butterfly wing surface arrange like overlapping roof tiles.There are submicrometric vertical gibbosities,horizontallinks,and nano-protuberances on the scales.First-incline-then-drip method and first-drip-then-incline method were used tomeasure the Sliding Angle(SA)of droplet on butterfly wing surface by an optical Contact Angle(CA)measuring system.Relatively smaller sliding angles indicate that the butterfly wing surface has fine self-cleaning property.Significantly differentSAs in various directions indicate the anisotropic self-cleaning property of butterfly wing surface.The SAs on the butterfly wingsurface without scales are remarkably larger than those with scales,which proves the crucial role of scales in determining theself-cleaning property.Butterfly wing surface is a template for design and fabrication ofbiomimetic materials and self-cleaningsubstrates.This work may offer insights into how to design directional self-cleaning coatings and anisotropic wetting surface. 展开更多
关键词 micro-/nano-structure anisotropism SELF-CLEANING SUPER-HYDROPHOBICITY SLIDING ANGLE
下载PDF
MULTIPLE INTERSECTIONS OF SPACE-TIME ANISOTROPIC GAUSSIAN FIELDS
2
作者 陈振龙 苑伟杰 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期275-294,共20页
Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X... Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields. 展开更多
关键词 anisotropic Gaussian field multiple intersections Hausdorff measure capacity
下载PDF
Properties of focused Laguerre–Gaussian beam propagating in anisotropic ocean turbulence
3
作者 王新光 马洋斌 +3 位作者 袁邱杰 陈伟 王乐 赵生妹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期386-393,共8页
We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical ... We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams. 展开更多
关键词 vortex beam orbital angular momentum focusing mirror anisotropic turbulence
下载PDF
Highly Aligned Graphene Aerogels for Multifunctional Composites
4
作者 Ying Wu Chao An +4 位作者 Yaru Guo Yangyang Zong Naisheng Jiang Qingbin Zheng Zhong‑Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期276-342,共67页
Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,an... Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material. 展开更多
关键词 Highly aligned graphene aerogels Quantitative characterization of alignment Multifunctional composites Anisotropic properties Multifunctional applications
下载PDF
THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM FOR AN ANISOTROPIC MEDIUM BY A PARTIALLY COATED BOUNDARY
5
作者 向建立 严国政 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期339-354,共16页
We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and... We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method. 展开更多
关键词 interior transmission eigenvalue anisotropic medium partially coated boundary the analytic Fredholm theory T-coercive method
下载PDF
Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab
6
作者 毋克凡 张虎 唐桂华 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期48-60,共13页
Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly ... Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly been studied,whereas the in-plane thermal conductivity has received less attention due to their limited thickness. 展开更多
关键词 COMPOSITES C/Si ANISOTROPIC
下载PDF
Alleviating the anisotropic microstructural change and boosting the lithium ions diffusion by grain orientation regulation for Ni-rich cathode materials
7
作者 Xinyou He Shilin Su +3 位作者 Bao Zhang Zhiming Xiao Zibo Zhang Xing Ou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期213-222,I0005,共11页
Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in t... Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in the properties of Ni-rich cathodes.The disordered particle arrangement is harmful to the cyclic performance and structural stability,yet the fundamental understanding of disordered structure on the structural degradation behavior is unclarified.Herein,we have designed three kinds of LiNi_(0.83)Co_(0.06)Mn_(0.11)O_(2) cathode materials with different primary particle orientations by regulating the precursor coprecipitation process.Combining finite element simulation and in-situ characterization,the Li^(+)transport and structure evolution behaviors of different materials are unraveled.Specifically,the smooth Li^(+)diffusion minimizes the reaction heterogeneity,homogenizes the phase transition within grains,and mitigates the anisotropic microstructural change,thereby modulating the crack evolution behavior.Meanwhile,the optimized structure evolution ensures radial tight junctions of the primary particles,enabling enhanced Li^(+)diffusion during dynamic processes.Closed-loop bidirectional enhancement mechanism becomes critical for grain orientation regulation to stabilize the cyclic performance.This precursor engineering with particle orientation regulation provides the useful guidance for the structural design and feature enhancement of Ni-rich layered cathodes. 展开更多
关键词 Ni-rich cathode Grain orientation regulation Anisotropic microstructural change Precursor engineering Li~+-ions diffusion
下载PDF
Quintessence anisotropic stellar models in quadratic and Born-Infeld modified teleparallel Rastall gravity
8
作者 Allah Ditta 夏铁成 +1 位作者 Irfan Mahmood Asif Mahmood 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期179-189,共11页
This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this g... This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings. 展开更多
关键词 anisotropic spheres quintessence field modified Rastall teleparallel gravity equation of state(EoS) f(T)gravity
下载PDF
Anisotropic strength,deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression
9
作者 Hongyuan Zhou Zaobao Liu +2 位作者 Fengjiao Liu Jianfu Shao Guoliang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期860-876,共17页
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ... The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects. 展开更多
关键词 Anisotropic strength and deformation True triaxial compression Thermal mechanical coupling Deep rock mechanics High temperature rock mechanics
下载PDF
Galerkin-based quasi-smooth manifold element(QSME)method for anisotropic heat conduction problems in composites with complex geometry
10
作者 Pan WANG Xiangcheng HAN +2 位作者 Weibin WEN Baolin WANG Jun LIANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期137-154,共18页
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ... The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations. 展开更多
关键词 anisotropic heat conduction quasi-smooth manifold element(QSME) composite with complex geometry numerical simulation finite element method(FEM)
下载PDF
Unconditionally stable Crank-Nicolson algorithm with enhanced absorption for rotationally symmetric multi-scale problems in anisotropic magnetized plasma
11
作者 WEN Yi WANG Junxiang XU Hongbing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期65-73,共9页
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ... Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation. 展开更多
关键词 anisotropic magnetized plasma body-of-revolution(BOR) Crank-Nicolson Douglas-Gunn(CNDG) finite-difference time-domain(FDTD) perfectly matched layer(PML) rotationally symmetric multi-scale problems
下载PDF
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer 被引量:1
12
作者 Jiangbo Lyu Tao Zhu +9 位作者 Yan Zhou Zhenmin Chen Yazhi Pi Zhengtong Liu Xiaochuan Xu Ke Xu Xu Ma Lei Wang Zizheng Cao Shaohua Yu 《Opto-Electronic Science》 2023年第11期14-24,共11页
Inverse design focuses on identifying photonic structures to optimize the performance of photonic devices.Conventional scalar-based inverse design approaches are insufficient to design photonic devices of anisotropic ... Inverse design focuses on identifying photonic structures to optimize the performance of photonic devices.Conventional scalar-based inverse design approaches are insufficient to design photonic devices of anisotropic materials such as lithium niobate(LN).To the best of our knowledge,this work proposes for the first time the inverse design method for anisotropic materials to optimize the structure of anisotropic-material based photonics devices.Specifically,the orientation dependent properties of anisotropic materials are included in the adjoint method,which provides a more precise prediction of light propagation within such materials.The proposed method is used to design ultra-compact wavelength division demultiplexers in the X-cut thin-film lithium niobate(TFLN)platform.By benchmarking the device performances of our method with those of classical scalar-based inverse design,we demonstrate that this method properly addresses the critical issue of material anisotropy in the X-cut TFLN platform.This proposed method fills the gap of inverse design of anisotropic materials based photonic devices,which finds prominent applications in TFLN platforms and other anisotropicmaterial based photonic integration platforms. 展开更多
关键词 integrated photonics inverse design for anisotropic materials adjoint method lithium niobate
下载PDF
Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing 被引量:1
13
作者 Qilin Jiang Long Chen +8 位作者 Jukun Liu Yuchan Zhang Shian Zhang Donghai Feng Tianqing Jia Peng Zhou Qian Wang Zhenrong Sun Hongxing Xu 《Opto-Electronic Science》 2023年第1期11-22,共12页
This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LI... This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LIPSSs exhibited good properties as nanowires,with a resistivity almost equal to that of the initial ITO film.By changing the laser fluence,the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of±10%.Furthermore,the average transmittance of the ITO films with regular LIPSSs in the range of 1200-2000 nm was improved from 21%to 60%.The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices-particularly in the near-infrared band. 展开更多
关键词 transparent nanowires periodic surface nanostructures femtosecond laser direct writing ITO film anisotropic electrical conductivity
下载PDF
Anisotropic optical and electric properties of β-gallium oxide
14
作者 Yonghui Zhang Fei Xing 《Journal of Semiconductors》 EI CAS CSCD 2023年第7期8-22,共15页
The anisotropic properties and applications ofβ-gallium oxide(β-Ga_(2)O_(3))are comprehensively reviewed.All the anisotropic properties are essentially resulted from the anisotropic crystal structure.The process flo... The anisotropic properties and applications ofβ-gallium oxide(β-Ga_(2)O_(3))are comprehensively reviewed.All the anisotropic properties are essentially resulted from the anisotropic crystal structure.The process flow of how to exfoliate nanoflakes from bulk material is introduced.Anisotropic optical properties,including optical bandgap,Raman and photolumines-cence characters are comprehensively reviewed.Three measurement configurations of angle-resolved polarized Raman spec-tra(ARPRS)are reviewed,with Raman intensity formulas calculated with Raman tensor elements.The method to obtain the Raman tensor elements of phonon modes through experimental fitting is also introduced.In addition,the anisotropy in elec-tron mobility and affinity are discussed.The applications,especially polarization photodetectors,based onβ-Ga_(2)O_(3)were summa-rized comprehensively.Three kinds of polarization detection mechanisms based on material dichroism,1D morphology and metal-grids are discussed in-depth.This review paper provides a framework for anisotropic optical and electric properties ofβ-Ga_(2)O_(3),as well as the applications based on these characters,and is expected to lead to a wider discussion on this topic. 展开更多
关键词 gallium oxide ANISOTROPIC DICHROISM POLARIZATION MONOCLINIC
下载PDF
2.5-Dimensional modeling of EM logging-while-drilling tool in anisotropic medium on a Lebedev grid
15
作者 Zhen-Guan Wu Hu Li Xi-Zhou Yue 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期249-260,共12页
A 2.5D finite-difference(FD)algorithm for the modeling of the electromagnetic(EM)logging-whiledrilling(LWD)tool in anisotropic media is presented.The FD algorithm is based on the Lebedev grid,which allows for the disc... A 2.5D finite-difference(FD)algorithm for the modeling of the electromagnetic(EM)logging-whiledrilling(LWD)tool in anisotropic media is presented.The FD algorithm is based on the Lebedev grid,which allows for the discretization of the frequency-domain Maxwell's equations in the anisotropic media in 2.5D scenarios without interpolation.This leads to a system of linear equations that is solved using the multifrontal direct solver which enables the simulation of multi-sources at nearly the cost of simulating a single source for each frequency.In addition,near-optimal quadrature derived from an optimized integration path in the complex plane is employed to implement the fast inverse Fourier Transform(IFT).The algorithm is then validated by both analytic and 3D solutions.Numerical results show that two Lebedev subgrid sets are sufficient for TI medium,which is common in geosteering environments.The number of quadrature points is greatly reduced by using the near-optimal quadrature method. 展开更多
关键词 2.5D modeling Electromagnetic logging-while-drilling Anisotropic medium Lebedev grid
下载PDF
Inverse Design and Experimental Verification of Metamaterials for Thermal Illusion Using Genetic Algorithms
16
作者 何宗堽 袁坤 +1 位作者 熊国欢 王健 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第10期73-77,共5页
Thermal metamaterials offer a promising avenue for creating artificial materials with unconventional physical properties,such as thermal cloak,concentrator,rotator,and illusion.However,designs and fabrication of therm... Thermal metamaterials offer a promising avenue for creating artificial materials with unconventional physical properties,such as thermal cloak,concentrator,rotator,and illusion.However,designs and fabrication of thermal metamaterials are of challenge due to the limitations of existing methods on anisotropic material properties.We propose an evolutionary framework for designing thermal metamaterials using genetic algorithm optimization.Our approach encodes unit cells with different thermal conductivities and performs global optimization using the evolution-inspired operators.We further fabricate the thermal functional cells using 3D printing and verify their thermal illusion functionality experimentally.Our study introduces a new design paradigm for advanced thermal metamaterials that can manipulate heat flows robustly and realize functional thermal metadevices without anisotropic thermal conductivity.Our approach can be easily applied to fabrications in various fields such as thermal management and thermal sensing. 展开更多
关键词 ANISOTROPIC THERMAL INVERSE
下载PDF
Microscopic damage evolution of anisotropic rocks under indirect tensile conditions: Insights from acoustic emission and digital image correlation techniques
17
作者 Chaoqun Chu Shunchuan Wu +1 位作者 Chaojun Zhang Yongle Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1680-1691,共12页
The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks.Brazilian tests are conducted for seven groups of shale specimens featuring different bedd... The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks.Brazilian tests are conducted for seven groups of shale specimens featuring different bedding angles. Acoustic emission (AE) and digital image correlation (DIC) technologies are used to monitor the in-situ failure of the specimens. Furthermore, the crack morphology of damaged samples is observed through scanning electron microscopy (SEM). Results reveal the structural dependence on the tensile mechanical behavior of shales. The shale disk exhibits compression in the early stage of the experiment with varying locations and durations. The location of the compression area moves downward and gradually disappears when the bedding angle increases. The macroscopic failure is well characterized by AE event location results, and the dominant frequency distribution is related to the bedding angle. The b-value is found to be stress-dependent.The crack turning angle between layers and the number of cracks crossing the bedding both increase with the bedding angle, indicating competition between crack propagations. SEM results revealed that the failure modes of the samples can be classified into three types:tensile failure along beddings with shear failure of the matrix, ladder shear failure along beddings with tensile failure of the matrix, and shear failure along multiple beddings with tensile failure of the matrix. 展开更多
关键词 anisotropic rock failure mechanism acoustic emission digital image correlation Brazilian test
下载PDF
Analysis of stresses at the center of transversely isotropic Brazilian disk
18
作者 Ali Aminzadeh Florian Amann 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期618-629,共12页
This article presents the stresses at the center of a Brazilian disk(BD)for transversely isotropic rocks.It is shown that the solution of stresses at the center of an anisotropic disk is a function of the disk radius ... This article presents the stresses at the center of a Brazilian disk(BD)for transversely isotropic rocks.It is shown that the solution of stresses at the center of an anisotropic disk is a function of the disk radius and the magnitude of applied load,as well as the material orientation with respect to the load axis and two dimensionless ratios with specific physical meanings and limitations.These two dimensionless parameters are the ratios of Young’s modulus and apparent shear modulus,although the ratio of apparent shear modulus will be eliminated if the Saint-Venant assumption is considered.Considerable finite element simulations are carried out to find the stresses at the disk center concerning the material orientation and the two dimensionless parameters.Also,an approximate formula obtained from analytical results,previously proposed in the literature for solving the tensile and compressive stresses at the disk center,is re-written and simplified based on these new definitions.The results of the approximate formula fitted to the analytical results are compared to those obtained from numerical solutions,suggesting a good agreement between the numerical and analytical methods.An approximate equation for the shear stress at the disk center is also formulated based on the numerical results.Finally,the influence of the assumptions for simplification of the proposed formula for the tensile,compressive,and shear stresses at the disk center is discussed,and simple and practical equations are proposed as estimations for the stresses at the center of the BD specimen for low to moderate anisotropic rocks.For highly anisotropic rocks,the reference plots can be used for more accuracy. 展开更多
关键词 Brazilian test Transverse isotropy Rock anisotropy Anisotropic disk Tensile stress Shear stress
下载PDF
Highly anisotropic Dirac fermion and spin transport properties in Cu-graphane
19
作者 吴超 张礼川 +5 位作者 夏霖 郝东 李仕琪 张礼智 谢月娥 陈元平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期386-390,共5页
Inspired by the successful synthesis of h Hv-graphane[Nano Lett.15903(2015)],a new two-dimensional(2D)Janus material Cu-graphane is proposed based on the first-principles calculations.Without the spin-orbit coupling(S... Inspired by the successful synthesis of h Hv-graphane[Nano Lett.15903(2015)],a new two-dimensional(2D)Janus material Cu-graphane is proposed based on the first-principles calculations.Without the spin-orbit coupling(SOC)effect,Cu-graphane is a Dirac semimetal with a highly anisotropic Dirac cone,whose Fermi velocity ranges from 0.12×10^(5)m/s to2.9×10^(5)m/s.The Dirac cone near the Fermi level can be well described with an extended 2D Dirac model Hamiltonian.In the presence of the SOC effect,band splitting is observed around the Fermi level,and a large intrinsic spin Hall conductivity(ISHC)with a maximum value of 346(h/e)S/cm is predicted.Moreover,the spin Hall transport can be regulated by slightly adjusting the Fermi energy,e.g.,grid voltage or chemical doping.Our work not only proposes a new 2D Janus material with a highly anisotropic Dirac cone and a large ISHC,but also reveals that a large ISHC may exist in some Dirac systems. 展开更多
关键词 GRAPHANE anisotropic Dirac fermion JANUS spin Hall effect
下载PDF
Electric modulation of anisotropic magnetoresistance in Pt/HfO_(2-x)/NiO_(y)/Ni heterojunctions
20
作者 叶晓羽 朱小健 +3 位作者 杨华礼 段吉鹏 孙翠 李润伟 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期98-103,共6页
Electric field control of magnetism through nanoionics has attracted tremendous attention owing to its high efficiency and low power consumption.In solid-state dielectrics,an electric field drives the redistribution o... Electric field control of magnetism through nanoionics has attracted tremendous attention owing to its high efficiency and low power consumption.In solid-state dielectrics,an electric field drives the redistribution of ions to create onedimensional magnetic conductive nanostructures,enabling the realization of intriguing magnetoresistance(MR)effects.Here,we explored the electric-controlled nickel and oxygen ion migration in Pt/HfO_(2-x)/NiO_(y)/Ni heterojunctions for MR modulation.By adjusting the voltage polarity and amplitude,the magnetic conductive filaments with mixed nickel and oxygen vacancy are constructed.This results in the reduction of device resistance by~10^(3)folds,and leads to an intriguing partial asymmetric MR effect.We show that the difference of the device resistance under positive and negative saturation magnetic fields exhibits good linear dependence on the magnetic field angle,which can be used for magnetic field direction detection.Our study suggests the potential of electrically controlled ion migration in creating novel magnetic nanostructures for sensor applications. 展开更多
关键词 NANOIONICS resistance random access memory anisotropic magnetoresistance angle detection
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部