期刊文献+
共找到8,131篇文章
< 1 2 250 >
每页显示 20 50 100
Investigating the elliptic anisotropy of identified particles in p-Pb collisions with a multi-phase transport model 被引量:1
1
作者 Si-Yu Tang Liang Zheng +1 位作者 Xiao-Ming Zhang Ren-Zhuo Wan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期160-169,共10页
The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculat... The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculations of differential v_(2)based on the advanced flow extraction method of light flavor hadrons(pions,kaons,protons,andΛ)in small collision systems were extended to a wider transverse momentum(p_(T))range of up to 8 GeV/c for the first time.The string-melting version of the AMPT model provides a good description of the measured p_(T)-differential v_(2)of the mesons but exhibits a slight deviation from the baryon v_(2).In addition,we observed the features of mass ordering at low p_(T)and the approximate number-of-constituentquark(NCQ)scaling at intermediate p_(T).Moreover,we demonstrate that hadronic rescattering does not have a significant impact on v_(2)in p-Pb collisions for different centrality selections,whereas partonic scattering dominates in generating the elliptic anisotropy of the final particles.This study provides further insight into the origin of collective-like behavior in small collision systems and has referential value for future measurements of azimuthal anisotropy. 展开更多
关键词 Azimuthal anisotropy Small collision systems Transport model
下载PDF
Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy
2
作者 黄威 俞金玲 +7 位作者 刘雨 彭燕 王利军 梁平 陈堂胜 徐现刚 刘峰奇 陈涌海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期630-637,共8页
Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a&#... Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect. 展开更多
关键词 scanning anisotropy microscopy SiC reflection anisotropy edge dislocation
下载PDF
Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases
3
作者 汤星舟 叶家耀 +4 位作者 王子烨 姜皓译 尚小虎 杨朝雁 李炳祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期519-524,共6页
The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotrop... The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties.We report the sign-reversal of△εin both the nematic and smectic A phases of these mixed liquid crystals,alongside a dual-frequency behaviour across a broad temperature spectrum.Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies.This exploration may pave the way for the discovery of new physical phenomena. 展开更多
关键词 mixed liquid crystal dielectric anisotropy TUNABLE NEMATIC SMECTIC
下载PDF
The Origin of Cosmic Structures Part 6: CMB Anisotropy
4
作者 J. C. Botke 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期257-276,共20页
In a recent series of papers, we introduced a new model of nucleosynthesis in which the matter content of the universe came into existence at a time of about 4 × 10<sup>-5</sup> s. At that time, a sma... In a recent series of papers, we introduced a new model of nucleosynthesis in which the matter content of the universe came into existence at a time of about 4 × 10<sup>-5</sup> s. At that time, a small percentage of the vacuum energy was converted into neutron/antineutron pairs with a very small excess of neutrons. This process was regulated by an imprint that was established in the vacuum during an initial Plank-era inflation. Immediately after their inception, annihilation and charge exchange reactions proceeded at a very high rate and ran to completion after an interval of about 10<sup>-11</sup> s. By then, all the antibaryons had disappeared thereby establishing the matter/antimatter asymmetry of the universe. What remained were very high densities of mesons and leptons, somewhat lower densities of protons and neutrons, and finally, the very high density of photons that eventually became the CMB. The density of matter so created varied from one location to another in such a manner as to account for all cosmic structures and because the energy density of the photons varied in proportion to that of the matter, the CMB-to-be came into existence with an anisotropic spectrum already in place. For structures, the size of galaxy clusters, the initial anisotropy magnitudes were on the order of 25%. In this paper, we will follow the subsequent evolution of the photons and show that this model predicts with accuracy the temperature of the warmest anisotropies in the observed CMB spectrum. . 展开更多
关键词 CMB anisotropy Dispersion NUCLEOSYNTHESIS Early Universe Time-Varying Curvature
下载PDF
Study on the low mechanical anisotropy of extruded Mg-Zn-Mn-Ce-Ca alloy tube in the compression process
5
作者 Dandan Li Qichi Le +6 位作者 Xiong Zhou Xiaoqiang Li Chenglu Hu Ruizhen Guo Tong Wang Ping Wang Wenxin Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1054-1067,共14页
In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani... In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube. 展开更多
关键词 Mg alloy tube Low mechanical anisotropy Weak texture Deformation mechanism.
下载PDF
Enhanced magnetic anisotropy and high hole mobility in magnetic semiconductor Ga_(1-x-y)Fe_(x)Ni_(y)Sb
6
作者 Zhi Deng Hailong Wang +5 位作者 Qiqi Wei Lei Liu Hongli Sun Dong Pan Dahai Wei Jianhua Zhao 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期16-21,共6页
(Ga,Fe)Sb is a promising magnetic semiconductor(MS)for spintronic applications because its Curie temperature(T_(C))is above 300 K when the Fe concentration is higher than 20%.However,the anisotropy constant Ku of(Ga,F... (Ga,Fe)Sb is a promising magnetic semiconductor(MS)for spintronic applications because its Curie temperature(T_(C))is above 300 K when the Fe concentration is higher than 20%.However,the anisotropy constant Ku of(Ga,Fe)Sb is below 7.6×10^(3)erg/cm^(3)when Fe concentration is lower than 30%,which is one order of magnitude lower than that of(Ga,Mn)As.To address this issue,we grew Ga_(1-x-y)Fe_(x)Ni_(y)Sb films with almost the same x(≈24%)and different y to characterize their magnetic and electrical transport properties.We found that the magnetic anisotropy of Ga_(0.76-y)Fe_(0.24)Ni_(y)Sb can be enhanced by increasing y,in which Ku is negligible at y=1.7%but increases to 3.8×10^(5)erg/cm^(3)at y=6.1%(T_(C)=354 K).In addition,the hole mobility(μ)of Ga_(1-x-y)Fe_(x)Ni_(y)Sb reaches 31.3 cm^(2)/(V∙s)at x=23.7%,y=1.7%(T_(C)=319 K),which is much higher than the mobility of Ga_(1-x)Fe_(x)Sb at x=25.2%(μ=6.2 cm^(2)/(V∙s)).Our results provide useful information for enhancing the magnetic anisotropy and hole mobility of(Ga,Fe)Sb by using Ni co-doping. 展开更多
关键词 magnetic semiconductor molecular beam epitaxy Fe-Ni co-doping magnetic anisotropy hole mobility
下载PDF
Analytical solutions to the precession relaxation of magnetization with uniaxial anisotropy
7
作者 张泽南 贾镇林 薛德胜 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期656-660,共5页
Based on the Landau-Lifshitz-Gilbert(LLG)equation,the precession relaxation of magnetization is studied when the external field H is parallel to the uniaxial anisotropic field H_(k).The evolution of three-component ma... Based on the Landau-Lifshitz-Gilbert(LLG)equation,the precession relaxation of magnetization is studied when the external field H is parallel to the uniaxial anisotropic field H_(k).The evolution of three-component magnetization is solved analytically under the condition of H=nH_(k)(n=3,1 and 0).It is found that with an increase of H or a decrease of the initial polar angle of magnetization,the relaxation time decreases and the angular frequency of magnetization increases.For comparison,the analytical solution for H_(k)=0 is also given.When the magnetization becomes stable,the angular frequency is proportional to the total effective field acting on the magnetization.The analytical solutions are not only conducive to the understanding of the precession relaxation of magnetization,but also can be used as a standard model to test the numerical calculation of LLG equation. 展开更多
关键词 precession relaxation Landau-Lifshitz-Gilbert(LLG)equation uniaxial anisotropy analytical solutions
下载PDF
Estimation of the anisotropy of hydraulic conductivity through 3D fracture networks using the directional geological entropy
8
作者 Chuangbing Zhou Zuyang Ye +2 位作者 Chi Yao Xincheng Fan Feng Xiong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期137-148,共12页
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi... With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors. 展开更多
关键词 3D fracture network Geological entropy Directional entropic scale anisotropy Hydraulic conductivity
下载PDF
Anisotropy of Trabecular Bone from Ultra-Distal Radius Digital X-Ray Imaging: Effects on Bone Mineral Density and Age
9
作者 Jian-Feng Chen 《Open Journal of Radiology》 2024年第1期14-23,共10页
Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions... Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age. 展开更多
关键词 anisotropy Trabecular Bone Score Bone Mineral Density Ultra-Distal Radius Digital X-Ray Image
下载PDF
Seismic anisotropy and upper mantle dynamics in Alaska:A review of shear wave splitting analyses
10
作者 Zhaofeng Jin Yuchen Yang +7 位作者 Muhammad Ishaidir Siregar Zihao Mu S.M.Ariful Islam Qichao Zhao Dan Wang Fan Zhang Xugang Yang Liwei Song 《Earthquake Research Advances》 CSCD 2024年第2期72-81,共10页
Shear wave splitting(SWS)is regarded as the most effective geophysical method to delineate mantle flow fields by detecting seismic azimuthal anisotropy in the earth's upper mantle,especially in tectonically active... Shear wave splitting(SWS)is regarded as the most effective geophysical method to delineate mantle flow fields by detecting seismic azimuthal anisotropy in the earth's upper mantle,especially in tectonically active regions such as subduction zones.The Aleutian-Alaska subduction zone has a convergence rate of approximately 50 mm/yr,with a trench length reaching nearly 2800 km.Such a long subduction zone has led to intensive continental deformation and numerous strong earthquakes in southern and central Alaska,while northern Alaska is relatively inactive.The sharp contrast makes Alaska a favorable locale to investigate the impact of subduction on mantle dynamics.Moreover,the uniqueness of this subduction zone,including the unusual subducting type,varying slab geometry,and atypical magmatic activity and composition,has intrigued the curiosity of many geoscientists.To identify different sources of seismic anisotropy beneath the Alaska region and probe the influence of a geometrically varying subducting slab on mantle dynamics,extensive SWS analyses have been conducted in the past decades.However,the insufficient station and azimuthal coverage,especially in early studies,not only led to some conflicting results but also strongly limited the in-depth investigation of layered anisotropy and the estimation of anisotropy depth.With the completion of the Transportable Array project in Alaska,recent studies have revealed more detailed mantle structures and characteristics based on the dense station coverage and newly collected massive seismic data.In this study,we review significant regional-and continental-scale SWS studies in the Alaska region and conclude the mantle flow fields therein,to understand how a geometrically varying subducting slab alters the regional mantle dynamics.The summarized mantle flow mechanisms are believed to be conducive to the understanding of seismic anisotropy patterns in other subduction zones with a complicated tectonic setting. 展开更多
关键词 Seismic anisotropy Shear wave splitting Mantle flow Alaska subduction zone SLAB
下载PDF
Major methods of seismic anisotropy
11
作者 Xinai Zhao Jing Wu 《Earthquake Research Advances》 CSCD 2024年第3期82-91,共10页
Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation(LPO) and shape-preferred... Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation(LPO) and shape-preferred orientation(SPO) according to its physical mechanisms. The main methods for studying seismic anisotropy include shearwave splitting analysis, P-wave travel time inversion and surface-wave tomography, etc. There are some differences and correlations among these methods. Seismic anisotropy is an important way to reveal the dynamic processes of crust-mantle evolution, and it is significant for monitoring crustal stress changes and improve seismic exploration studies. With the help of long-term observation, the application of machine learning techniques and combining inversion based on multiple phases would become potential developments in seismic anisotropy studies. This may improve the understanding of complex seismic anisotropic models, such as multiple layers anisotropy with an oblique axis of symmetry. 展开更多
关键词 Seismic anisotropy Shear-wave splitting P-wave travel time inversion Surface-wave tomography
下载PDF
A failure criterion for shale considering the anisotropy and hydration based on the shear slide failure model 被引量:3
12
作者 Qiangui Zhang Bowei Yao +7 位作者 Xiangyu Fan Yong Li Nicholas Fantuzzi Tianshou Ma Yufei Chen Feitao Zeng Xing Li Lizhi Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期447-462,共16页
A failure criterion fully considering the anisotropy and hydration of shale is essential for shale formation stability evaluation.Thus,a novel failure criterion for hydration shale is developed by using Jaeger’s shea... A failure criterion fully considering the anisotropy and hydration of shale is essential for shale formation stability evaluation.Thus,a novel failure criterion for hydration shale is developed by using Jaeger’s shear failure criterion to describe the anisotropy and using the shear strength reduction caused by clay minerals hydration to evaluate the hydration.This failure criterion is defined with four parameters in Jaeger’s shear failure criterion(S_(1),S_(2),a andφ),three hydration parameters(k,ω_(sh)andσ_(s))and two material size parameters(d and l0).The physical meanings and determining procedures of these parameters are described.The accuracy and applicability of this failure criterion are examined using the published experimental data,showing a cohesive agreement between the predicted values and the testing results,R^(2)=0.916 and AAREP(average absolute relative error percentage)of 9.260%.The error(|D_(p)|)is then discussed considering the effects ofβ(angle between bedding plane versus axial loading),moisture content and confining pressure,presenting that|Dp|increases whenβis closer to 30°,and|D_(p)|decreases with decreasing moisture content and with increasing confining pressure.Moreover,|D_(p)|is demonstrated as being sensitive to S1and being steady with decrease in the data set whenβis 0°,30°,45°and 90°. 展开更多
关键词 SHALE Failure criterion Mechanical strength Shear slide failure anisotropy HYDRATION
下载PDF
Upper crustal deformation characteristics in the northeastern Tibetan Plateau and its adjacent areas revealed by GNSS and anisotropy data 被引量:3
13
作者 Shuyu Li Yuan Gao Honglin Jin 《Earthquake Science》 2023年第4期297-308,共12页
The northeastern part of the Tibetan Plateau is a region where different tectonic blocks collide and intersect,and large earthquakes are frequent.Global Navigation Satellite System(GNSS)observations show that tectonic... The northeastern part of the Tibetan Plateau is a region where different tectonic blocks collide and intersect,and large earthquakes are frequent.Global Navigation Satellite System(GNSS)observations show that tectonic deformation in this region is strong and manifests as non-uniform deformation associated with tectonic features.S-wave splitting studies of near-field seismic data show that seismic anisotropy parameters can also reveal the upper crustal medium deformation beneath the reporting station.In this paper,we summarize the surface deformation from GNSS observations and crustal deformation from seismic anisotropy data in the northeastern Tibetan Plateau.By comparing the principal compressive strain direction with the fast S-wave polarization direction of near-field S-wave splitting,we analyzed deformation and its differences in surface and upper crustal media in the northeastern Tibetan Plateau and adjacent areas.The principal compressive strain direction derived from GNSS is generally consistent with the polarization direction of fast S-waves,but there are also local tectonic regions with large differences between them,which reflect the different deformation mechanisms of regional upper crustal media.The combination of GNSS and seismic anisotropy data can reveal the depth variation characteristics of crustal deformation and deepen understanding of three-dimensional crustal deformation and the deep dynamical mechanisms underlying it.it. 展开更多
关键词 upper crustal deformation northeastern Tibetan Plateau GNSS seismic anisotropy deformation differences
下载PDF
Understand anisotropy dependence of damage evolution and material removal during nanoscratch of MgF_(2) single crystals 被引量:4
14
作者 Chen Li Yinchuan Piao +3 位作者 Feihu Zhang Yong Zhang Yuxiu Hu Yongfei Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期236-252,共17页
To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF_(2) single crystals,nanoscratch tests of MgF_(2) single crystals with different crystal planes a... To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF_(2) single crystals,nanoscratch tests of MgF_(2) single crystals with different crystal planes and directions were systematically performed,and surface morphologies of the scratched grooves under different conditions were analyzed.The experimental results indicated that anisotropy considerably affected the damage evolution in the machining process of MgF_(2) single crystals.A stress field model induced by the scratch was developed by considering the anisotropy,which indicated that during the loading process,median cracks induced by the tensile stress initiated and propagated at the front of the indenter.Lateral cracks induced by tensile stress initiated and propagated on the subsurface during the unloading process.In addition,surface radial cracks induced by the tensile stress were easily generated during the unloading process.The stress change led to the deflection of the propagation direction of lateral cracks.Therefore,the lateral cracks propagated to the workpiece surface,resulting in brittle removal in the form of chunk chips.The plastic deformation parameter indicated that the more the slip systems were activated,the more easily the plastic deformation occurred.The cleavage fracture parameter indicated that the cracks propagated along the activated cleavage planes,and the brittle chunk removal was owing to the subsurface cleavage cracks propagating to the crystal surface.Under the same processing parameters,the scratch of the(001)crystal plane along the[100]crystal-orientation was found to be the most conducive to achieving plastic machining of MgF_(2) single crystals.The theoretical results agreed well with the experimental results,which will not only enhance the understanding of the anisotropy dependence of the damage evolution and removal process during the machining of MgF_(2) crystals,but also provide a theoretical foundation for achieving the high-efficiency and low-damage processing of anisotropic single crystals. 展开更多
关键词 anisotropy dependence damage evolution stress field crack propagation NANOSCRATCH MgF_(2)single crystal
下载PDF
Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates 被引量:2
15
作者 Yuji Bai Zhixiu Wang +4 位作者 Bo Jiang Mengqi Li Cong Zhu Xiaotong Gu Hai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2212-2223,共12页
The tensile properties of 2297-T87 Al–Li alloy thick plates at different thickness position and in different direction were analyzed via tensile testing,optical microscopy(OM),X-ray diffraction(XRD),scanning electron... The tensile properties of 2297-T87 Al–Li alloy thick plates at different thickness position and in different direction were analyzed via tensile testing,optical microscopy(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and transmission electron microscopy(TEM).Results indicated that the ultimate tensile strength(UTS)and yield strength(YS)of the alloy decreased firstly and then increased from the 1/8T position to the 1/2T position,whereas elongation to failure(Ef)decreased gradually such that its value along the rolling direction(RD)was higher than those along the transverse direction(TD)at the same thickness position.From the 1/8T position to the 3/8T position of the alloy,the UTS and YS along the TD were higher than those along the RD.At the 1/2T position of the alloy,the UTS,YS,and Ef along the RD were the highest,whereas those along the normal direction(ND)were the lowest.Microstructural observations further revealed that the anisotropy of tensile properties was related to grain morphology,crystal texture,second-phase particles,and Li atom segregation. 展开更多
关键词 2297 alloy thick plate tensile properties anisotropy grain morphology second-phase particles
下载PDF
Vortex bound states influenced by the Fermi surface anisotropy 被引量:1
16
作者 方德龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期497-501,共5页
The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states... The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states.The large-scale calculation of vortex bound states is introduced in the presence of fourfold or twofold Fermi surface by solving the Bogoliubov–de Gennes(BdG)equations.Two kinds of quasiparticles’behaviors can be extracted from the local density of states(LDOS)around a vortex.The angle-dependent quasiparticles will move from high energy to low energy when the angle varies from curvature maxima to minima of the Fermi surface,while the angle-independent quasiparticles tend to stay at a relatively higher energy.In addition,the weight of angle-dependent quasiparticles can be enhanced by the increasing anisotropy degree of Fermi surface. 展开更多
关键词 VORTEX anisotropy Fermi surface local density of states
下载PDF
Study on anisotropy of microstructure and mechanical properties of AZ31 magnesium alloy fabricated by wire arc additive manufacturing 被引量:1
17
作者 Dong Ma Chun-jie Xu +4 位作者 Jun Tian Shang Sui Can Guo Xiang-quan Wu Zhong-ming Zhang 《China Foundry》 SCIE CAS CSCD 2023年第4期280-288,共9页
Based on wire arc additive manufacturing(WAAM)technology,AZ31 magnesium alloy in bulk was successfully fabricated,and its microstructure as well as mechanical properties in different planes were observed and analyzed.... Based on wire arc additive manufacturing(WAAM)technology,AZ31 magnesium alloy in bulk was successfully fabricated,and its microstructure as well as mechanical properties in different planes were observed and analyzed.The AZ31 magnesium alloy has a similar microstructure in the building direction(Z)and travel direction(X),both of which are equiaxed grains.There are heat-affected zones(HAZs)with coarse grains below the fusion line.The second phase is primarily composed of the Mg17Al12 phase,which is evenly distributed in different directions.In addition,the residual stress varies in different directions.There is no significant difference in the hardness of the AZ31 alloy along the Z and X directions,with the average hardness being 68.4 HV and 67.9 HV,respectively.Even though the specimens’ultimate tensile strength along the travel direction is higher in comparison to that along the building direction,their differences in elongation and yield strength are smaller,indicating that the anisotropy of the mechanical properties of the material is small. 展开更多
关键词 magnesium alloy wire arc additive manufacturing anisotropy MICROSTRUCTURE mechanical properties
下载PDF
Meso-mechanical anisotropy and fracture evolution of reef limestones from the Maldives Islands and the South China Sea 被引量:1
18
作者 Lihui Li Chenglong Li +3 位作者 Beixiu Huang Jianguang Li Shouding Li Xiao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3173-3187,共15页
Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conv... Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conventional rocks both in terms of rock structure and mechanical properties. In this study, mesoscale uniaxial compression experiments with five different loading directions were conducted on two kinds of reef limestones from the Maldives Islands and the South China Sea, respectively. The real-time high-resolution videos and images of failure processes were recorded simultaneously to investigate the fracture evolution and fracture surface roughness of reef limestones. It demonstrated that the reef limestones belonged to extremely soft to soft rocks, and their uniaxial compressive strength (UCS) values fluctuated with high discreteness. The mesoscale mechanical properties of reef limestones were highly anisotropic and mainly controlled by pore structure. The occurrence of dissolution pores in reef limestone tended to intensify mechanical anisotropy. With the integration of the fracture initiation and propagation features of reef limestones, it is supposed that the intrinsic mechanism of anisotropy was probably attributed to the differences in coral growth direction and dissolution. Furthermore, the quantified fracture surface roughness was revealed to have a good consistency with density and UCS for the reef limestones from the South China Sea. The findings are helpful for providing theoretical and experimental references for engineering construction in coral reef areas. 展开更多
关键词 Reef limestone Mechanical anisotropy Failure mode Pore structure Fracture surface roughness
下载PDF
Superexchange Interactions and Magnetic Anisotropy in MnPSe_(3)Monolayer
19
作者 王光宇 杨柯 +4 位作者 马曜峥行 刘禄 芦地 周宇轩 吴骅 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第7期56-62,共7页
Two-dimensional van der Waals magnetic materials are of great current interest for their promising applications in spintronics.Using density functional theory calculations in combination with the maximally localized W... Two-dimensional van der Waals magnetic materials are of great current interest for their promising applications in spintronics.Using density functional theory calculations in combination with the maximally localized Wannier functions method and the magnetic anisotropy analyses,we study the electronic and magnetic properties of MnPSe_(3)monolayer.Our results show that it is a charge transfer antiferromagnetic(AF)insulator.For this Mn^(2)+3d^(5)system,although it seems straightforward to explain the AF ground state using the direct exchange,we find that the nearly 90oMn-Se-Mn charge transfer type superexchange plays a dominant role in stabilizing the AF ground state.Moreover,our results indicate that,although the shape anisotropy favors an out-of-plane spin orientation,the spin-orbit coupling(SOC)leads to the experimentally observed in-plane spin orientation.We prove that the actual dominant contribution to the magnetic anisotropy comes from the second-order perturbation of the SOC,by analyzing its distribution over the reciprocal space.Using the AF exchange and anisotropy parameters obtained from our calculations,our Monte Carlo simulations give the Néel temperature T_(N)=47 K for MnPSe_(3)monolayer,which agrees with the experimental 40 K.Furthermore,our calculations show that under a uniaxial tensile(compressive)strain,Néel vector would be parallel(perpendicular)to the strain direction,which well reproduces the recent experiments.We also predict that T_(N)would be increased by a compressive strain. 展开更多
关键词 anisotropy EXCHANGE MAGNETIC
下载PDF
Highly Tunable Perpendicular Magnetic Anisotropy and Anisotropic Magnetoresistance in Ru-Doped La_(0.67)Sr_(0.33)MnO_(3)Epitaxial Films
20
作者 华恩达 戴坤杰 +8 位作者 王庆 叶欢 刘宽 章金凤 鲁京迪 刘楷 金锋 王凌飞 吴文彬 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第7期74-79,共6页
As a prototypical half-metallic ferromagnet,La_(0.67)Sr_(0.33)MnO_(3)(LSMO)has been extensively studied due to its versatile physical properties and great potential in spintronic applications.However,the weak perpendi... As a prototypical half-metallic ferromagnet,La_(0.67)Sr_(0.33)MnO_(3)(LSMO)has been extensively studied due to its versatile physical properties and great potential in spintronic applications.However,the weak perpendicular magnetic anisotropy(PMA)limits the controllability and detection of magnetism in LSMO,thus hindering the realization of oxide-based spintronic devices with low energy consumption and high integration level.Motivated by this challenge,we develop an experimental approach to enhance the PMA of LSMO epitaxial films.By cooperatively introducing 4d Ru doping and a moderate compressive strain,the maximum uniaxial magnetic anisotropy in Ru-doped LSMO can reach 3.0×10^(5)J/m^(3)at 10 K.Furthermore,we find a significant anisotropic magnetoresistance effect in these Ru-doped LSMO films,which is dominated by the strong PMA.Our findings offer an effective pathway to harness and detect the orientations of magnetic moments in LSMO films,thus promoting the feasibility of oxide-based spintronic devices,such as spin valves and magnetic tunnel junctions. 展开更多
关键词 anisotropy HIGHLY REALIZATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部