This note introduces a method for sampling Ising models with mixed boundary conditions.As an application of annealed importance sampling and the Swendsen-Wang algorithm,the method adopts a sequence of intermediate dis...This note introduces a method for sampling Ising models with mixed boundary conditions.As an application of annealed importance sampling and the Swendsen-Wang algorithm,the method adopts a sequence of intermediate distributions that keeps the temperature fixed but turns on the boundary condition gradually.The numerical results show that the variance of the sample weights is relatively small.展开更多
An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to ...An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to improve the sampling efficiency, the simulated annealing algorithm is adopted to optimize the density center of the importance sampling for each failure mode, and results that the more significant contribution the points make to fuzzy failure probability, the higher occurrence possibility the points are sampled. For the system with multiple fuzzy failure modes, a weighted and mixed importance sampling function is constructed. The contribution of each fuzzy failure mode to the system failure probability is represented by the appropriate factors, and the efficiency of sampling is improved furthermore. The variances and the coefficients of variation are derived for the failure probability estimations. Two examples are introduced to illustrate the rationality of the present method. Comparing with the direct Monte-Carlo method, the improved efficiency and the precision of the method are verified by the examples.展开更多
文摘This note introduces a method for sampling Ising models with mixed boundary conditions.As an application of annealed importance sampling and the Swendsen-Wang algorithm,the method adopts a sequence of intermediate distributions that keeps the temperature fixed but turns on the boundary condition gradually.The numerical results show that the variance of the sample weights is relatively small.
基金This project is supported by National Natural Science Foundation of China (No.10572117)Aerospace Science Foundation of China(No.N3CH0502,No.N5CH0001)Provincial Natural Science Foundation of Shanxi, China(No.N3CS0501).
文摘An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to improve the sampling efficiency, the simulated annealing algorithm is adopted to optimize the density center of the importance sampling for each failure mode, and results that the more significant contribution the points make to fuzzy failure probability, the higher occurrence possibility the points are sampled. For the system with multiple fuzzy failure modes, a weighted and mixed importance sampling function is constructed. The contribution of each fuzzy failure mode to the system failure probability is represented by the appropriate factors, and the efficiency of sampling is improved furthermore. The variances and the coefficients of variation are derived for the failure probability estimations. Two examples are introduced to illustrate the rationality of the present method. Comparing with the direct Monte-Carlo method, the improved efficiency and the precision of the method are verified by the examples.