Two kinds of cold rolling experiments, single cold rolling and double cold rolling, were carried out on one titanium stabilized interstitial free (IF) steel that has been warm rolled at ferrite temperature. The main a...Two kinds of cold rolling experiments, single cold rolling and double cold rolling, were carried out on one titanium stabilized interstitial free (IF) steel that has been warm rolled at ferrite temperature. The main aim was to investigate the evolution of rolling and annealing textures from the well known behavior observed under single cold rolling condition to the less understood double cold rolling by using orientation distribution function (ODF). In the twice cold rolled samples, the annealing texture comprises only single {111}(110-112) r-fibre texture when it subjected to moderate reduction in the first round of rolling. Accordingly both the once cold rolled sample and the twice cold rolled sample with heavy reduction in the first round of rolling have much complex texture components. They are related to the formation of initial {111} subgrain and the priority growth of stable {111} nucleus.展开更多
The orientation distribution of recrystallization grains formed during annealing, as well as their misorientation relationship to the deformation matrix in cold rolled FeCo alloy have been investigated. It was found t...The orientation distribution of recrystallization grains formed during annealing, as well as their misorientation relationship to the deformation matrix in cold rolled FeCo alloy have been investigated. It was found that most of the recrystallization nuclei were located near the boundary area with rather random orientations, and their misorientation angles to the deformation matrix were generally very high. However a few nuclei were also observed inside the deformation grains, to which they had very similar orientations. Therefore the misorientation angles between the nuclei and the deformation matrix were generally very low. The orientation and the misorientation distributions of the nuclei have very strong influence on the recrystallization process which could result in a very weak recrystallization texture. The corresponding mechanism is discussed.展开更多
How to manufacture the high magnetic induction grain-oriented silicon steel(Hi-B steel)by the process featured with the primary recrystallization annealing was demonstrated,during which nitriding and decarburizing w...How to manufacture the high magnetic induction grain-oriented silicon steel(Hi-B steel)by the process featured with the primary recrystallization annealing was demonstrated,during which nitriding and decarburizing were simultaneously realized in laboratory.By the techniques of optical microscope,scanning electronic microscope and electron backscattered diffraction,both the microstructure and the texture in the samples were characterized.The samples had been subjected to nitriding to different nitrogen contents at two specified temperatures using the two defined microstructural parameters:the grain size inhomogeneity factorσ*and the texture factor AR.The former is the ratio of the mean value to standard deviation of grain sizes;the latter is the ratio of the total volume fraction of the harmful textures to that of beneficial textures including {110}〈001〉.When the N content increased from 0.0055%to 0.0330%after the annealing at both 835 and 875°C,the resultant recrystallized grain size decreased butσ*changed little;whilst the rise of annealing temperature from 835 to 875°C resulted in the increase in both grain size andσ*.Moreover,either the injected N content or temperature had insignificant influence on the components of primary recrystallization texture developed during annealing.However,the increase of temperature led to the decreases in both intensity and volume fraction of{001}〈120〉and{110}〈001〉textures but increases in the{114}〈481〉andγfiber textures and the resultant decrease of AR.展开更多
The evolution of the microstructure and texture in copper has been studied during repetitive extrusionupsetting(REU) to a total von Mises strain of 4.7 and during subsequent annealing at different temperatures. It i...The evolution of the microstructure and texture in copper has been studied during repetitive extrusionupsetting(REU) to a total von Mises strain of 4.7 and during subsequent annealing at different temperatures. It is found that the texture is significantly altered by each deformation pass. A duplex 001 + 111 fiber texture with an increased 111 component is observed after each extrusion pass,whereas the 110 fiber component dominates the texture after each upsetting pass. During REU, the microstructure is refined by deformation-induced boundaries. The average cell size after a total strain of 4.7 is measured to be ~0.3 μm. This refined microstructure is unstable at room temperature as is evident from the presence of a small number of recrystallized grains in the deformed matrix. Pronounced recrystallization took place during annealing at 200?C for 1 h with recrystallized grains developing predominantly in high misorientation regions. At 350?C the microstructure is fully recrystallized with an average grain size of only 2.3 μm and a very weak crystallographic texture. This REU-processed and subsequently annealed material is considered to be potentially suitable for using as a material for sputtering targets.展开更多
文摘Two kinds of cold rolling experiments, single cold rolling and double cold rolling, were carried out on one titanium stabilized interstitial free (IF) steel that has been warm rolled at ferrite temperature. The main aim was to investigate the evolution of rolling and annealing textures from the well known behavior observed under single cold rolling condition to the less understood double cold rolling by using orientation distribution function (ODF). In the twice cold rolled samples, the annealing texture comprises only single {111}(110-112) r-fibre texture when it subjected to moderate reduction in the first round of rolling. Accordingly both the once cold rolled sample and the twice cold rolled sample with heavy reduction in the first round of rolling have much complex texture components. They are related to the formation of initial {111} subgrain and the priority growth of stable {111} nucleus.
基金the National Natural Science Foundation of China! (No.59671008) the Deutsche FOr s chungsgeme is oh aft. T hey are also very
文摘The orientation distribution of recrystallization grains formed during annealing, as well as their misorientation relationship to the deformation matrix in cold rolled FeCo alloy have been investigated. It was found that most of the recrystallization nuclei were located near the boundary area with rather random orientations, and their misorientation angles to the deformation matrix were generally very high. However a few nuclei were also observed inside the deformation grains, to which they had very similar orientations. Therefore the misorientation angles between the nuclei and the deformation matrix were generally very low. The orientation and the misorientation distributions of the nuclei have very strong influence on the recrystallization process which could result in a very weak recrystallization texture. The corresponding mechanism is discussed.
基金financially sponsored by the State Key Special Project of Key Basic Material Technical Promotion and Industrialization(2016YFB0300305)
文摘How to manufacture the high magnetic induction grain-oriented silicon steel(Hi-B steel)by the process featured with the primary recrystallization annealing was demonstrated,during which nitriding and decarburizing were simultaneously realized in laboratory.By the techniques of optical microscope,scanning electronic microscope and electron backscattered diffraction,both the microstructure and the texture in the samples were characterized.The samples had been subjected to nitriding to different nitrogen contents at two specified temperatures using the two defined microstructural parameters:the grain size inhomogeneity factorσ*and the texture factor AR.The former is the ratio of the mean value to standard deviation of grain sizes;the latter is the ratio of the total volume fraction of the harmful textures to that of beneficial textures including {110}〈001〉.When the N content increased from 0.0055%to 0.0330%after the annealing at both 835 and 875°C,the resultant recrystallized grain size decreased butσ*changed little;whilst the rise of annealing temperature from 835 to 875°C resulted in the increase in both grain size andσ*.Moreover,either the injected N content or temperature had insignificant influence on the components of primary recrystallization texture developed during annealing.However,the increase of temperature led to the decreases in both intensity and volume fraction of{001}〈120〉and{110}〈001〉textures but increases in the{114}〈481〉andγfiber textures and the resultant decrease of AR.
基金supported by the Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2015jcyj BX0115)support of the “111” Project (B16007) by the Ministry of Education and the State Administration of Foreign Experts Affairs of Chinathe National Natural Science Foundation of China (Nos. 51471039, 51421001)
文摘The evolution of the microstructure and texture in copper has been studied during repetitive extrusionupsetting(REU) to a total von Mises strain of 4.7 and during subsequent annealing at different temperatures. It is found that the texture is significantly altered by each deformation pass. A duplex 001 + 111 fiber texture with an increased 111 component is observed after each extrusion pass,whereas the 110 fiber component dominates the texture after each upsetting pass. During REU, the microstructure is refined by deformation-induced boundaries. The average cell size after a total strain of 4.7 is measured to be ~0.3 μm. This refined microstructure is unstable at room temperature as is evident from the presence of a small number of recrystallized grains in the deformed matrix. Pronounced recrystallization took place during annealing at 200?C for 1 h with recrystallized grains developing predominantly in high misorientation regions. At 350?C the microstructure is fully recrystallized with an average grain size of only 2.3 μm and a very weak crystallographic texture. This REU-processed and subsequently annealed material is considered to be potentially suitable for using as a material for sputtering targets.