Artificial intelligence(AI) is the key to mining and enhancing the value of big data, and knowledge graph is one of the important cornerstones of artificial intelligence, which is the core foundation for the integrati...Artificial intelligence(AI) is the key to mining and enhancing the value of big data, and knowledge graph is one of the important cornerstones of artificial intelligence, which is the core foundation for the integration of statistical and physical representations. Named entity recognition is a fundamental research task for building knowledge graphs, which needs to be supported by a high-quality corpus, and currently there is a lack of high-quality named entity recognition corpus in the field of geology, especially in Chinese. In this paper, based on the conceptual structure of geological ontology and the analysis of the characteristics of geological texts, a classification system of geological named entity types is designed with the guidance and participation of geological experts, a corresponding annotation specification is formulated, an annotation tool is developed, and the first named entity recognition corpus for the geological domain is annotated based on real geological reports. The total number of words annotated was 698 512 and the number of entities was 23 345. The paper also explores the feasibility of a model pre-annotation strategy and presents a statistical analysis of the distribution of technical and term categories across genres and the consistency of corpus annotation. Based on this corpus, a Lite Bidirectional Encoder Representations from Transformers(ALBERT)-Bi-directional Long Short-Term Memory(BiLSTM)-Conditional Random Fields(CRF) and ALBERT-BiLSTM models are selected for experiments, and the results show that the F1-scores of the recognition performance of the two models reach 0.75 and 0.65 respectively, providing a corpus basis and technical support for information extraction in the field of geology.展开更多
基金the IUGS Deep-time Digital Earth (DDE) Big Science Programfinancially supported by the National Key R&D Program of China (No.2022YFF0711601)+4 种基金the Natural Science Foundation of Hubei Province of China (No.2022CFB640)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education (No.GLAB 2023ZR01)the Fundamental Research Funds for the Central Universities,State Key Laboratory of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR,Chinese Academy of Surveying and Mapping (No.2022-03-08)the Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities,MNR (NO.KFKT-2022-02)the Project of Chengdu Municipal Bureau of Planning and Natural Resources (No.5101012018002703)。
文摘Artificial intelligence(AI) is the key to mining and enhancing the value of big data, and knowledge graph is one of the important cornerstones of artificial intelligence, which is the core foundation for the integration of statistical and physical representations. Named entity recognition is a fundamental research task for building knowledge graphs, which needs to be supported by a high-quality corpus, and currently there is a lack of high-quality named entity recognition corpus in the field of geology, especially in Chinese. In this paper, based on the conceptual structure of geological ontology and the analysis of the characteristics of geological texts, a classification system of geological named entity types is designed with the guidance and participation of geological experts, a corresponding annotation specification is formulated, an annotation tool is developed, and the first named entity recognition corpus for the geological domain is annotated based on real geological reports. The total number of words annotated was 698 512 and the number of entities was 23 345. The paper also explores the feasibility of a model pre-annotation strategy and presents a statistical analysis of the distribution of technical and term categories across genres and the consistency of corpus annotation. Based on this corpus, a Lite Bidirectional Encoder Representations from Transformers(ALBERT)-Bi-directional Long Short-Term Memory(BiLSTM)-Conditional Random Fields(CRF) and ALBERT-BiLSTM models are selected for experiments, and the results show that the F1-scores of the recognition performance of the two models reach 0.75 and 0.65 respectively, providing a corpus basis and technical support for information extraction in the field of geology.