This letter presents a systematic approach to estimate the annual energy production(AEP) of variable-speed wind turbines erected at high-altitude sites. Compared with the existing empirical-model based approaches, the...This letter presents a systematic approach to estimate the annual energy production(AEP) of variable-speed wind turbines erected at high-altitude sites. Compared with the existing empirical-model based approaches, the proposed approach models the influence of the air density on the power production while employing the theoretical power curve. Consequently, the proposed approach provides a precise estimation of AEP, which can serve as a foundation of the optimum turbinesite matching design at different-altitude sites.展开更多
Under the background of energy crisis, the development of renewable energy will significantly alleviate the energy and environmental crisis. On the basis of the European Centre for Medium-Range Weather Forecasts(ECMW...Under the background of energy crisis, the development of renewable energy will significantly alleviate the energy and environmental crisis. On the basis of the European Centre for Medium-Range Weather Forecasts(ECMWF)interim reanalysis(ERA-interim) wind data, the annual and seasonal grade divisions of the global offshore wind energy are investigated. The results show that the annual mean offshore wind energy has great potential. The wind energy over the westerly oceans of the Northern and Southern Hemispheres is graded as Class 7(the highest), whereas that over most of the mid-low latitude oceans are higher than Class 4. The wind energy over the Arctic Ocean(Class 4) is more optimistic than the traditional evaluations. Seasonally, the westerly oceans of the Northern Hemisphere with a Class 7 wind energy are found to be largest in January, followed by April and October, and smallest in July. The area of the Class 7 wind energy over the westerly oceans of the Southern Hemisphere are found to be largest in July and slightly smaller in the other months. In July, the wind energy over the Arabian Sea and the Bay of Bengal is graded as Class 7, which is obviously richer than that in other months. It is shown that in this data set in April and October, the majority of the northern Indian Ocean are regions of indigent wind energy resource.展开更多
The main objective of this study is to generate accurate synthetic hourly solar radiation data by using an easily accessible open source data.In this regard,a new approach is proposed for estimation of synthetic hourl...The main objective of this study is to generate accurate synthetic hourly solar radiation data by using an easily accessible open source data.In this regard,a new approach is proposed for estimation of synthetic hourly global solar radiation during the day by utilizing only annual solar energy data.First time in literature,a model has been developed for prediction hourly and daily solar radiation based on annual solar energy parameter in this study.Parameters of the model were generated and tested for Turkey and one of them was presented as a case study within this paper.Long term measured hourly horizontal solar irradiance data from a network of Turkish meteorological stations was used to calibrate the model function.The predictions are compared with the solar data available in literature for Turkey.The advanced simple new model is utilized in open source computer program and has the potential to be adapted to other countries.展开更多
This paper presents an analysis of a pre-feasibility study of a 10 MW offshore wind power project in Nakhon Si Thammarat province, southern Thailand. The wind speeds at the hub heights of large scale wind turbine gene...This paper presents an analysis of a pre-feasibility study of a 10 MW offshore wind power project in Nakhon Si Thammarat province, southern Thailand. The wind speeds at the hub heights of large scale wind turbine generators (WTG), i.e. 80-100 m, were extrapolated using monthly mean wind shear coefficients and the l/7th exponent. Using WAsP 9.0, the annual energy production from several models of offshore wind farms using different WTG was analyzed. The capacity factor and the cost of energy were then computed. Using best available estimates, the analysis shows that the estimated annual mean offshore wind speeds at 80-100 m were in the range of 6.4 and 8.3 m/s. The annual energy production by the wind farm from nine models of wind turbine generators were in the range of 20-39 GWh/year, corresponding to a capacity factor in the range of 26-46%, while the cost of energy was 12-15 US cent/kWh.展开更多
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic paramete...With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.展开更多
Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy co...Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy consumption and maximum product output value do not coordinate with each other and do not lead to the maximum economic benefit of a refinery. In this paper, a systematic optimization approach is proposed for the maximum annual economic benefit of an existing crude oil distillation system, considering product output value and energy consumption simultaneously. A shortcut model in Aspen Plus is used to describe the crude oil distillation and the pinch analysis is adopted to identify the target of energy recovery. The optimization is a nonlinear programming problem and solved by stochastic algorithm of particle warm optimization.展开更多
Bifacial rooftop photovoltaic panels appear to be an excellent means of power generation in this era of urbanization,especially for land-limited countries like Bangladesh.This paper presents a software-based approach ...Bifacial rooftop photovoltaic panels appear to be an excellent means of power generation in this era of urbanization,especially for land-limited countries like Bangladesh.This paper presents a software-based approach to design and simulate a bifacial solar-panel-based energy model on the rooftop of the North Hall of Residence of the Islamic University of Technology,Gazipur.This vertically mounted model investigates the feasibility and applicability of such an energy model in a university residence,situated in a load-shedding-prone area.Hence,three prominent software platforms,namely PVSOL,PVsyst and System Advisor Model(SAM),are brought into action and rigorous simulations are performed for three different orientations;promising outcomes are observed in terms of annual energy yield,bifacial gain(BG)and consumption coverage of the grid and PV model.The annual energy demand of the North Hall is~444733.5 kWh.The three orientations can generate annually 92508.62,94643.48 and 86758.94 kWh,respectively.Hence,it is evident that the proposed orientations can supply almost 19-21%of the site’s annual demand.Monthly BG analysis shows an overall increase in energy gain of 13%,15.6%and 6%for Orientation-1,Orientation-2 and Orientation-3,respectively.A rigorous comparative analysis and deviation analysis among the software results has been accomplished to gain more insight into the feasibility of the proposed system.Thus,we have focused on a detailed software-based estimation of energy production for different orientations of the PV panels,considering several factors,which will provide prior knowledge and assessment before going for hardware implementation in the future.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.61803393)the Natural Science Foundation of Hunan Province(No.2020JJ4751)the Basic Science Research Program through the National Research Foundation(NRF)of Korea funded by the Ministry of Education(No.NRF-2016R1A6A1A03013567).
文摘This letter presents a systematic approach to estimate the annual energy production(AEP) of variable-speed wind turbines erected at high-altitude sites. Compared with the existing empirical-model based approaches, the proposed approach models the influence of the air density on the power production while employing the theoretical power curve. Consequently, the proposed approach provides a precise estimation of AEP, which can serve as a foundation of the optimum turbinesite matching design at different-altitude sites.
基金The Junior Fellowships for CAST Advanced Innovation Think-tank Program under contract No.DXB-ZKQN-2016-019the National Key Basic Research and Development Program of China under contract No.2013CB956200+2 种基金the National Natural Science Foundation of China under contract No.41275086the Academic Program of Dalian Naval Academy under contract No.2016-01the Natural Science Foundation of Shandong Province under contract No.ZR2016DL09
文摘Under the background of energy crisis, the development of renewable energy will significantly alleviate the energy and environmental crisis. On the basis of the European Centre for Medium-Range Weather Forecasts(ECMWF)interim reanalysis(ERA-interim) wind data, the annual and seasonal grade divisions of the global offshore wind energy are investigated. The results show that the annual mean offshore wind energy has great potential. The wind energy over the westerly oceans of the Northern and Southern Hemispheres is graded as Class 7(the highest), whereas that over most of the mid-low latitude oceans are higher than Class 4. The wind energy over the Arctic Ocean(Class 4) is more optimistic than the traditional evaluations. Seasonally, the westerly oceans of the Northern Hemisphere with a Class 7 wind energy are found to be largest in January, followed by April and October, and smallest in July. The area of the Class 7 wind energy over the westerly oceans of the Southern Hemisphere are found to be largest in July and slightly smaller in the other months. In July, the wind energy over the Arabian Sea and the Bay of Bengal is graded as Class 7, which is obviously richer than that in other months. It is shown that in this data set in April and October, the majority of the northern Indian Ocean are regions of indigent wind energy resource.
文摘The main objective of this study is to generate accurate synthetic hourly solar radiation data by using an easily accessible open source data.In this regard,a new approach is proposed for estimation of synthetic hourly global solar radiation during the day by utilizing only annual solar energy data.First time in literature,a model has been developed for prediction hourly and daily solar radiation based on annual solar energy parameter in this study.Parameters of the model were generated and tested for Turkey and one of them was presented as a case study within this paper.Long term measured hourly horizontal solar irradiance data from a network of Turkish meteorological stations was used to calibrate the model function.The predictions are compared with the solar data available in literature for Turkey.The advanced simple new model is utilized in open source computer program and has the potential to be adapted to other countries.
文摘This paper presents an analysis of a pre-feasibility study of a 10 MW offshore wind power project in Nakhon Si Thammarat province, southern Thailand. The wind speeds at the hub heights of large scale wind turbine generators (WTG), i.e. 80-100 m, were extrapolated using monthly mean wind shear coefficients and the l/7th exponent. Using WAsP 9.0, the annual energy production from several models of offshore wind farms using different WTG was analyzed. The capacity factor and the cost of energy were then computed. Using best available estimates, the analysis shows that the estimated annual mean offshore wind speeds at 80-100 m were in the range of 6.4 and 8.3 m/s. The annual energy production by the wind farm from nine models of wind turbine generators were in the range of 20-39 GWh/year, corresponding to a capacity factor in the range of 26-46%, while the cost of energy was 12-15 US cent/kWh.
基金supported by the National Basic Research Program of China (973 Program) (No. 2007CB714605)
文摘With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.
基金Supported by the National Natural Science Foundation of China(21176178)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13B02)
文摘Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy consumption and maximum product output value do not coordinate with each other and do not lead to the maximum economic benefit of a refinery. In this paper, a systematic optimization approach is proposed for the maximum annual economic benefit of an existing crude oil distillation system, considering product output value and energy consumption simultaneously. A shortcut model in Aspen Plus is used to describe the crude oil distillation and the pinch analysis is adopted to identify the target of energy recovery. The optimization is a nonlinear programming problem and solved by stochastic algorithm of particle warm optimization.
文摘Bifacial rooftop photovoltaic panels appear to be an excellent means of power generation in this era of urbanization,especially for land-limited countries like Bangladesh.This paper presents a software-based approach to design and simulate a bifacial solar-panel-based energy model on the rooftop of the North Hall of Residence of the Islamic University of Technology,Gazipur.This vertically mounted model investigates the feasibility and applicability of such an energy model in a university residence,situated in a load-shedding-prone area.Hence,three prominent software platforms,namely PVSOL,PVsyst and System Advisor Model(SAM),are brought into action and rigorous simulations are performed for three different orientations;promising outcomes are observed in terms of annual energy yield,bifacial gain(BG)and consumption coverage of the grid and PV model.The annual energy demand of the North Hall is~444733.5 kWh.The three orientations can generate annually 92508.62,94643.48 and 86758.94 kWh,respectively.Hence,it is evident that the proposed orientations can supply almost 19-21%of the site’s annual demand.Monthly BG analysis shows an overall increase in energy gain of 13%,15.6%and 6%for Orientation-1,Orientation-2 and Orientation-3,respectively.A rigorous comparative analysis and deviation analysis among the software results has been accomplished to gain more insight into the feasibility of the proposed system.Thus,we have focused on a detailed software-based estimation of energy production for different orientations of the PV panels,considering several factors,which will provide prior knowledge and assessment before going for hardware implementation in the future.