A greenhouse pot experiment was conducted to investigate the in?uence of soil moisture content on plant growth and the rhizosphere microbial community structure of four plant species (white clover, alfalfa, sudan gras...A greenhouse pot experiment was conducted to investigate the in?uence of soil moisture content on plant growth and the rhizosphere microbial community structure of four plant species (white clover, alfalfa, sudan grass, tall fescue), grown individually or in a mixture. The soil moisture content was adjusted to 55% or 80% water holding capacity (WHC). The results indicated that the total plant biomass of one pot was lower at 55% WHC. At a given soil moisture, the total plant biomass of white clover and tall ...展开更多
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their...Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition.展开更多
Alfalfa is a high quality forage that is not often utilized in the southeastern United States because of its perceived lack of adaptability to the area. However, the risk of growing alfalfa could be partially mitigate...Alfalfa is a high quality forage that is not often utilized in the southeastern United States because of its perceived lack of adaptability to the area. However, the risk of growing alfalfa could be partially mitigated by its inclusion into an existing bermudagrass system that makes up a large portion of pastures and hay fields in Mississippi. Alfalfa was planted into an existing bermudagrass hay field at a rate of 17, 22, 28 and 39 kg·ha-1 in no-till and minimum till sod preparation and analyzed for three growing seasons. Tillage did not affect any of the variables observed but seeding rate and time affected DM (dry matter) yield, forage nutritive value and plot composition. The increasing alfalfa seeding rate increased alfalfa yield in the plot but this was isolated to only the first year. Dry matter yields decreased over the three years due to the decrease in alfalfa composition, but throughout the growing season DM yields increased after the first year suggesting bermudagrass recolonization within the plot. Forage nutritive value was positively affected with as little as 20% of the plot composed of alfalfa suggesting that even thinning stands by the third year might offer economic advantages.展开更多
The aim of this study was to identify the main classes of secondary metabolites present in the root and shoot crude extracts and fractions from the forage grass Urochloa humidicola (Rendle) Morrone & Zuloaga and t...The aim of this study was to identify the main classes of secondary metabolites present in the root and shoot crude extracts and fractions from the forage grass Urochloa humidicola (Rendle) Morrone & Zuloaga and to evaluate the allelopathic effect of these metabolites on forage legumes for intercropping. Phytochemical prospecting analyses, 1H NMR and capillary electrophoresis were performed on extracts of U. humidicola. Allelopathic activity was evaluated in germination of Stylosanthes, Macrotyloma axillare and Lactuca sativa L. (standard) in the presence of crude extracts, isolated saponins, flavonoids and trans-cinnamic acid. The metabolite classes present in the extracts could be determined by the combined use of the tested analytical techniques, but their use alone was usually not sufficient to chemically characterize the species. Capillary electrophoresis was effective in detecting phenolic compounds. Macrotyloma axillare was tolerant to crude extracts of U. humidicola. Saponins and trans-cinnamic acid, but not the flavonoids, reduced germination of the target plants.展开更多
A field experiment was carried out at the CSIC Muñovela farm belonging to the Spanish National Research Council (CSIC) in order to evaluate the effect of sowing orchard grass (Dactylis glomerata var. Trerano) ...A field experiment was carried out at the CSIC Muñovela farm belonging to the Spanish National Research Council (CSIC) in order to evaluate the effect of sowing orchard grass (Dactylis glomerata var. Trerano) and lucerne (Medicago sativa var. Aragon) in monoculture and in combination. The experiment was based on a randomized block designed with a factorial arrangement (5 × 2). Experimental units were 40 plots distributed in four blocks. The phosphorus fertilization (P) factor included two types of conditions: basal fertilization without phosphorus (-P) and basal fertilization with phosphorus (+P), and the vegetation cover factor (T) included five conditions depending on the grass (G) and the legume (L). Above-ground biomass showed statistically significant differences among seasons and years (P Lolium perenne L. and Poa pratensis L. throughout the three years indicated that both species significantly increased their presence over time regardless of the treatments applied. The analysis performed for the other plant species (those other than grasses and legumes) allowed us to determine that the T1 and T5 treatments, which correspond to single species not treated with the application of phosphorus, influenced the presence of 70% of other species planted. Our specific aim was to explore how changing plant biotic diversity affects productivity under a given set of conditions. We manipulated plant species richness as an experimental factor to determine if productivity would be affected by changes in the ratios of plants sown.展开更多
Our objective was to evaluate the combining ability among cultivars of forage species, commonly sown in temperate regions of Argentina using a short rotation system. Three genetically diverse cultivars of prairie brom...Our objective was to evaluate the combining ability among cultivars of forage species, commonly sown in temperate regions of Argentina using a short rotation system. Three genetically diverse cultivars of prairie brome grass (Bromus catharticus, cv Copetona, cv ?andú and cv Tango), a white clover cultivar (Trifolium repens, cv Lucero) and a red clover cultivar (T. pratense, cv Tropero) were evaluated. A randomized complete block design experiment was established in 2005. The treatments included five monocultures and ten binary mixtures. The experiment was harvested 6 times over an 18-month period. Cumulative dry matter yield (kg?ha–1) was calculated as the sum of the six individual harvests. Diallel analysis provided estimates of the general combining ability (GCA) and specific combining ability (SCA). Red clover in monoculture and mixtures produced the highest yields, with significant positive GCA effects (P P P P < 0.01). Given the short-term nature of this study, we must limit our inference to short-term pastures (<2 years). Under these conditions, red clover had the best combination with prairie brome grass.展开更多
基金the National Natural Science Foundation of China (No. 40621061)the National Basic Research Program (973) of China(No. 2005CB121105)
文摘A greenhouse pot experiment was conducted to investigate the in?uence of soil moisture content on plant growth and the rhizosphere microbial community structure of four plant species (white clover, alfalfa, sudan grass, tall fescue), grown individually or in a mixture. The soil moisture content was adjusted to 55% or 80% water holding capacity (WHC). The results indicated that the total plant biomass of one pot was lower at 55% WHC. At a given soil moisture, the total plant biomass of white clover and tall ...
文摘Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition.
文摘Alfalfa is a high quality forage that is not often utilized in the southeastern United States because of its perceived lack of adaptability to the area. However, the risk of growing alfalfa could be partially mitigated by its inclusion into an existing bermudagrass system that makes up a large portion of pastures and hay fields in Mississippi. Alfalfa was planted into an existing bermudagrass hay field at a rate of 17, 22, 28 and 39 kg·ha-1 in no-till and minimum till sod preparation and analyzed for three growing seasons. Tillage did not affect any of the variables observed but seeding rate and time affected DM (dry matter) yield, forage nutritive value and plot composition. The increasing alfalfa seeding rate increased alfalfa yield in the plot but this was isolated to only the first year. Dry matter yields decreased over the three years due to the decrease in alfalfa composition, but throughout the growing season DM yields increased after the first year suggesting bermudagrass recolonization within the plot. Forage nutritive value was positively affected with as little as 20% of the plot composed of alfalfa suggesting that even thinning stands by the third year might offer economic advantages.
文摘The aim of this study was to identify the main classes of secondary metabolites present in the root and shoot crude extracts and fractions from the forage grass Urochloa humidicola (Rendle) Morrone & Zuloaga and to evaluate the allelopathic effect of these metabolites on forage legumes for intercropping. Phytochemical prospecting analyses, 1H NMR and capillary electrophoresis were performed on extracts of U. humidicola. Allelopathic activity was evaluated in germination of Stylosanthes, Macrotyloma axillare and Lactuca sativa L. (standard) in the presence of crude extracts, isolated saponins, flavonoids and trans-cinnamic acid. The metabolite classes present in the extracts could be determined by the combined use of the tested analytical techniques, but their use alone was usually not sufficient to chemically characterize the species. Capillary electrophoresis was effective in detecting phenolic compounds. Macrotyloma axillare was tolerant to crude extracts of U. humidicola. Saponins and trans-cinnamic acid, but not the flavonoids, reduced germination of the target plants.
文摘A field experiment was carried out at the CSIC Muñovela farm belonging to the Spanish National Research Council (CSIC) in order to evaluate the effect of sowing orchard grass (Dactylis glomerata var. Trerano) and lucerne (Medicago sativa var. Aragon) in monoculture and in combination. The experiment was based on a randomized block designed with a factorial arrangement (5 × 2). Experimental units were 40 plots distributed in four blocks. The phosphorus fertilization (P) factor included two types of conditions: basal fertilization without phosphorus (-P) and basal fertilization with phosphorus (+P), and the vegetation cover factor (T) included five conditions depending on the grass (G) and the legume (L). Above-ground biomass showed statistically significant differences among seasons and years (P Lolium perenne L. and Poa pratensis L. throughout the three years indicated that both species significantly increased their presence over time regardless of the treatments applied. The analysis performed for the other plant species (those other than grasses and legumes) allowed us to determine that the T1 and T5 treatments, which correspond to single species not treated with the application of phosphorus, influenced the presence of 70% of other species planted. Our specific aim was to explore how changing plant biotic diversity affects productivity under a given set of conditions. We manipulated plant species richness as an experimental factor to determine if productivity would be affected by changes in the ratios of plants sown.
基金Commercial cultivars seed used in this research were kindly provided by GAPP semillas S.A.and Gentos S.A,Argentina.Anonymous suggestions are acknowledged.
文摘Our objective was to evaluate the combining ability among cultivars of forage species, commonly sown in temperate regions of Argentina using a short rotation system. Three genetically diverse cultivars of prairie brome grass (Bromus catharticus, cv Copetona, cv ?andú and cv Tango), a white clover cultivar (Trifolium repens, cv Lucero) and a red clover cultivar (T. pratense, cv Tropero) were evaluated. A randomized complete block design experiment was established in 2005. The treatments included five monocultures and ten binary mixtures. The experiment was harvested 6 times over an 18-month period. Cumulative dry matter yield (kg?ha–1) was calculated as the sum of the six individual harvests. Diallel analysis provided estimates of the general combining ability (GCA) and specific combining ability (SCA). Red clover in monoculture and mixtures produced the highest yields, with significant positive GCA effects (P P P P < 0.01). Given the short-term nature of this study, we must limit our inference to short-term pastures (<2 years). Under these conditions, red clover had the best combination with prairie brome grass.
文摘为明确18%噁唑酰草胺·噁嗪草酮乳油对直播水稻田一年生禾本科杂草的防除效果及其对水稻的安全性。参照GB/T 17980.40—2000《农药田间药效试验准则(一)》于2023年在水稻2.5~4叶期,禾本科杂草2~4叶期采用茎叶喷雾法开展大田试验。试验结果显示18%噁唑酰草胺·噁嗪草酮乳油有效成分用药量108.0~135.0 g a.i./hm^(2),可有效防除稗草、马唐、千金子等一年生禾本科杂草,药后30 d株和鲜重防效分别为89.07%~92.51%和92.00%~94.13%。18%噁唑酰草胺·噁嗪草酮乳油能够有效防除直播水稻田一年生禾本科杂草,且对水稻生长安全,杀草速度较快。