期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
The changes in the annual distribution of mountain runoff during the period of 1965-2018 in Hexi Corridor,Northwest China
1
作者 Yan Luo ZhiXiang Lu +2 位作者 Qi Feng Meng Zhu JinBo Zhang 《Research in Cold and Arid Regions》 CSCD 2024年第2期73-83,共11页
The annual distribution characteristics of river runoff in arid regions have significant implications for water resource stability and management.Based on the mountain runoff data from 1965 to 2018,this study examines... The annual distribution characteristics of river runoff in arid regions have significant implications for water resource stability and management.Based on the mountain runoff data from 1965 to 2018,this study examines the annual change characteristics of monthly runoff of the Shiyang River Basin,Heihe River Basin,and Shule River Basin in the Hexi Corridor,Northwest China.Many indexes are used and analyzed,including the coefficient of variance,the complete regulation coefficient,the concentration degree and concentration period,the magnitude of change,the skewness coefficient,and the kurtosis coefficient of the annual distribution curves.The results reveal the following:(1)The inhomogeneity of annual runoff distribution in the Taolai River and the rivers to the west of it,except the Shiyou River,show an increasing trend.Conversely,the inhomogeneity of the rivers to the east of the Taolai River generally show a downward trend,but the coefficient of variance value is still very high.(2)In the Shiyang River Basin,the annual distribution of the concentration period is characterized by a relatively discrete pattern.Conversely,the Heihe River Basin exhibits a relatively concentrated pattern,and the distribution pattern of the Shule River Basin is quite different.Notably,all concentration periods in the three basins have shifted backward after the 2000s.(3)The Shiyang River Basin exhibits disordered annual distribution curves of runoff in different years.In contrast,the Heihe River Basin presents a typical‘single-peak’pattern with a prominent right-skewed.The Shule River Basin has regular distribution curves,with a gradually significant‘double-peak’pattern from east to west.Overall,there has been a slight change in runoff in the Shiyang River Basin,while the Heihe River Basin and Shule River Basin have experienced significant increases in runoff.The annual distribution curves of runoff in the Liyuan River and the rivers to the east of it exhibit a gentle peak pattern,and the appearance probability of extreme runoff during the year is low.Conversely,the rivers to the west of the Liyuan River,excluding the Danghe River,display a sharp peak and thick tail pattern,indicating that the appearance probability of extreme runoff during the year is high.These findings have practical implications for the planning and management of water resources in the Hexi Corridor.Moreover,they provide a solid foundation for predicting future changes in regional water resources. 展开更多
关键词 Hexi Corridor Inland rivers Mountain runoff annual distribution characteristics of runoff
下载PDF
Long-term Trend and Fractal of Annual Runoff Process in Mainstream of Tarim River 被引量:18
2
作者 XU Jianhua CHEN Yaning +1 位作者 LI Weihong DONG Shan 《Chinese Geographical Science》 SCIE CSCD 2008年第1期77-84,共8页
Based on the time series data from the Aral hydrological station for the period of 1958-2005,the paper re-veals the long-term trend and fractal of the annual runoff process in the mainstream of the Tarim River by usin... Based on the time series data from the Aral hydrological station for the period of 1958-2005,the paper re-veals the long-term trend and fractal of the annual runoff process in the mainstream of the Tarim River by using the wavelet analysis method and the fractal theory.The main conclusions are as follows:1)From a large time scale point of view,i.e.the time scale of 16(24)years,the annual runoff basically shows a slightly decreasing trend as a whole from 1958 to 2005.If the time scale is reduced to 8(23)or 4(22)years,the annual runoff still displays the basic trend as the large time scale,but it has fluctuated more obviously during the period.2)The correlation dimension for the annual runoff process is 3.4307,non-integral,which indicates that the process has both fractal and chaotic characteris-tics.The correlation dimension is above 3,which means that at least four independent variables are needed to describe the dynamics of the annual runoff process.3)The Hurst exponent for the first period(1958-1973)is 0.5036,which equals 0.5 approximately and indicates that the annual runoff process is in chaos.The Hurst exponents for the second(1974-1989)and third(1990-2005)periods are both greater than 0.50,which indicate that the annual runoff process showed a long-enduring characteristic in the two periods.The Hurst exponent for the period from 1990 to 2005 indi-cates that the annual runoff will show a slightly increasing trend in the 16 years after 2005. 展开更多
关键词 annual runoff wavelet FRACTAL Tarim River
下载PDF
The complex nonlinear systems with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of the Tarim River 被引量:1
3
作者 徐建华 陈亚宁 +2 位作者 李卫红 季民河 董山 《Journal of Geographical Sciences》 SCIE CSCD 2009年第1期25-35,共11页
This paper attempted to identify fractal and chaotic characteristics of the annual runoff processes in headwaters of the Tarim River.Methods of fractal analyses were used to explore several aspects of the temporal cha... This paper attempted to identify fractal and chaotic characteristics of the annual runoff processes in headwaters of the Tarim River.Methods of fractal analyses were used to explore several aspects of the temporal changes from 1957 to 2002.The main findings are as follows:(1) The annual runoff processes of the three headwaters of the Tarim River are com-plex nonlinear systems with fractal as well as chaotic dynamics.(2) The correlation dimensions of attractor derived from the time series of the annual runoff for the Hotan,Yarkand and Aksu rivers are all greater than 3.0 and non-integral,implying that all three rivers are chaotic dynamical systems that are sensitive to initial conditions,and the dynamic modeling of their annual runoff process requires at least four independent variables.(3) The time series of annual runoff in each river presents a long-term correlation characteristic.The Hurst exponent for the period of 1989 to 2002 suggests that we may expect to see an increasing trend in the annual runoff of the Aksu and Yarkand rivers in the years after 2002,but a decreasing tendency for the Hotan River in the same period. 展开更多
关键词 annual runoff process HEADWATER Tarim River Basin correlation dimension Hurst exponent
下载PDF
Quantitative research of annual runoff distribution characteristics in the Dagujia River basin,Yantai,China
4
作者 Liu Delin Liu Xianzhao Zhang Jiping 《Ecological Economy》 2006年第4期365-372,共8页
Mann-Kendall method and minimum variance method are used in this study to analyze the mean value variable-point of the runoff data observed by Fushan Hydrological Station in the Dagujia River basin from 1966 to 2004. ... Mann-Kendall method and minimum variance method are used in this study to analyze the mean value variable-point of the runoff data observed by Fushan Hydrological Station in the Dagujia River basin from 1966 to 2004. Based on the results, the runoff time is divided into four periods with the similar hydrological variation character. The annual runoff distribution characters in the Dagujia River basin are discussed by using the non-uniform coefficients, concentration degree and concentration period, variation range, etc. The results indicate that: (1) River runoff is very unevenly distributed throughout the year in Dagujia River. About 90% of runoff is in the period from June to October, while the runoff from November to April of the next year is lower. (2) The annual runoff distribution characters during 1966-1971 are very similar to that of 1982-1996, and the runoff of 1972-1981 is almost similar to that of 1997-2004. (3) The annual runoff distribution characters have changed obviously during 1997-2004 compared with the other periods, which makes it more difficult to exploit and use the water resource in the future. 展开更多
关键词 annual runoff distribution Mann-Kendall method Non-uniform coefficient Concentration degree DagujiaRiver basin
下载PDF
Annual Runoff and Sediment in Duhok Reservoir Watershed Using SWAT and WEPP Models
5
作者 Mohammad E. Mohammad Nadhir Al-Ansari Sven Knutsson 《Engineering(科研)》 2016年第7期410-422,共14页
Estimation of runoff volume and sediment load is the main problem that affects the performance of dams due to the reduction in the storage capacity of their reservoirs and their effect on dam efficiency and operation ... Estimation of runoff volume and sediment load is the main problem that affects the performance of dams due to the reduction in the storage capacity of their reservoirs and their effect on dam efficiency and operation schedule. The simulation models can be considered for this purpose if the continuous field measurements are not available. Soil and Water Assessment Tool (SWAT) and Water Erosion Prediction Project (WEPP) models were applied to estimate the annual runoff volume and sediment load for Duhok Dam Reservoir in north of Duhok/Iraq for the period 1988-2011. The estimated annual runoff volume varied from 2.3 to 34.7 MCM for considered period. Those values were affected by rainfall depth, intensity and runoff coefficient. The resultant annual runoff coefficient for the studied area ranged from 0.05 to 0.35 (average was 0.18) causing an average runoff volume of about 14 MCM. The results of sediment routing indicated that the values of sediment yields varied from 50 to 1400 t/km2/year depending on sub basin properties. The average annual sediment load from the whole watershed is about 120 × 10<sup>3</sup> ton. The estimated total sediment arrived to Duhok Reservoir for the considered period 1988-2011 was about 2.9 × 10<sup>6</sup> ton. The results indicate that both models gave reasonable results in comparison with measured values. Based on statistical criteria, the results of both models are close to gather. 展开更多
关键词 annual Runoff annual Sediments Duhok Dam SWAT Model WEPP Model
下载PDF
Estimating runoff coefficient for quantity assessment of roof rainwater harvesting system 被引量:1
6
作者 张炜 李思敏 唐锋兵 《Journal of Southeast University(English Edition)》 EI CAS 2014年第2期220-224,共5页
In order to accurately estimate the runoff coefficient for the quantity assessment of the roof rainwater harvesting system RRHS great differences in the value of event runoff coefficient ψERC were observed by field m... In order to accurately estimate the runoff coefficient for the quantity assessment of the roof rainwater harvesting system RRHS great differences in the value of event runoff coefficient ψERC were observed by field monitoring under different roof types roof slope and material and diverse rainfall distributions rainfall depth and intensity in three years 2010 to 2012 in Handan Hebei China.The results indicate that the distribution of ψERC is more highly correlated with the event rainfall depth than other factors. The relationship between ψERC and the rainfall depth can be well represented by the piecewise linear function.Further based on the daily rainfall data over the period from 1960 to 2008 the value of the annual runoff coefficient ψARC is calculated. Although the total rainfall depth in each year is different ψARC in Handan can be considered as a constant 0.62 approximately. The results can be used for the quantity assessment and performance analysis of the RRHS. 展开更多
关键词 roof rainwater harvesting system event runoff coefficient annual runoff coefficient rainfall depth
下载PDF
Research on runoff variations based on wavelet analysis and wavelet neural network model: A case study of the Heihe River drainage basin (1944-2005) 被引量:6
7
作者 WANG Jun MENG Jijun 《Journal of Geographical Sciences》 SCIE CSCD 2007年第3期327-338,共12页
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin... The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin. 展开更多
关键词 annual runoff variations wavelet analysis wavelet neural network model GIS spatial analysis HeiheRiver drainage basin
下载PDF
An Improved Markov Chain Model Based on Autocorrelation and Entropy Techniques and Its Application to State Prediction of Water Resources 被引量:2
8
作者 ZHOU Ping ZHOU Yuliang +4 位作者 JIN Juliang LIU Li WANG Zongzhi CHENG Liang ZHANG Libing 《Chinese Geographical Science》 SCIE CSCD 2011年第2期176-184,共9页
According to the relationships among state transition probability matrixes with different step lengths, an improved Markov chain model based on autocorrelation and entropy techniques was introduced. In the improved Ma... According to the relationships among state transition probability matrixes with different step lengths, an improved Markov chain model based on autocorrelation and entropy techniques was introduced. In the improved Markov chain model, the state transition probability matrixes can be adjusted. The steps of the historical state of the event, which was significantly related to the future state of the event, were determined by the autocorrelation technique, and the impact weights of the event historical state on the event future state were determined by the entropy technique. The presented model was applied to predicting annual precipitation and annual runoff states, showing that the improved model is of higher precision than those existing Markov chain models, and the determination of the state transition probability matrixes and the weights is more reasonable. The physical concepts of the improved model are distinct, and its computation process is simple and direct, thus, the presented model is sufficiently general to be applicable to the prediction problems in hydrology and water resources. 展开更多
关键词 improved Markov chain model AUTOCORRELATION ENTROPY annual precipitation annual runoff genetic algorithm
下载PDF
Sensitivity of runoff to climatic variability in the northern and southern slopes of the Middle Tianshan Mountains,China 被引量:4
9
作者 ZHANG Feiyun BAI Lei +1 位作者 LI Lanhai WANG Quan 《Journal of Arid Land》 SCIE CSCD 2016年第5期681-693,共13页
Temperature and precipitation play an important role in the distribution of intra-annual runoff by influencing the timing and contribution of different water sources.In the northern and southern slopes of the Middle T... Temperature and precipitation play an important role in the distribution of intra-annual runoff by influencing the timing and contribution of different water sources.In the northern and southern slopes of the Middle Tianshan Mountains in China,the water sources of rivers are similar;however,the proportion and dominance of water sources contributing to runoff are different.Using the Manas River watershed in the northern slope and the Kaidu River watershed in the southern slope of the Middle Tianshan Mountains as case studies,we investigated the changes in annual runoff under climate change.A modified hydrological model was used to simulate runoff in the Kaidu River and Manas River watersheds.The results indicated that runoff was sensitive to precipitation variation in the southern slope and to temperature variation in the northern slope of the Middle Tianshan Mountains.Variations in temperature and precipitation substantially influence annual and seasonal runoff.An increase in temperature did not influence the volume of spring runoff;but it resulted in earlier spring peaks with higher levels of peak flow.Damages caused by spring peak flow from both slopes of the Middle Tianshan Mountains should be given more attention in future studies. 展开更多
关键词 annual runoff distribution climatic factors Kaidu River watershed Manas River watershed
下载PDF
THE EFFECT OF FOREST FIRE ON STREAMFLOW IN DAXING'AN MOUNTAINS
10
作者 蔡体久 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1995年第3期96-99,共4页
Based on the data obtained by single watershed experiment, the changes in streamnow by forest fire had been studied. The results showed the most forest fire in Daxing'an Mountains in 1987 resulted in the increase ... Based on the data obtained by single watershed experiment, the changes in streamnow by forest fire had been studied. The results showed the most forest fire in Daxing'an Mountains in 1987 resulted in the increase of annual runoff in the mitial stage, snowmelt runoff reduced in MayThe relationship between precipitation and streamflow was closed. The changes in streainnow relied more on the precipitation. 展开更多
关键词 Forest fire annual runoff Snowmelt runoff correlation analysis
下载PDF
Analysis of Runoff into Reservoir Change Pattern and Causes in Fenhe Reservoir
11
作者 Caihong Hu Zhihua Zhang Nan Li 《Journal of Geoscience and Environment Protection》 2016年第7期159-165,共7页
Based on the 58 years monthly flow data (from 1956 to 2013) editing by Jingle hydrological station of Fen River and Shangjinyou station, data resources are used to analyze the annual and inter-annual changes from spat... Based on the 58 years monthly flow data (from 1956 to 2013) editing by Jingle hydrological station of Fen River and Shangjinyou station, data resources are used to analyze the annual and inter-annual changes from spatial and temporal scale by statistical methods, mainly annual spatial and temporal distribution, trend of inter-annual changes, cycle and mutation changes. The reasons of runoff into reservoir changes are deeply analyzed by annual precipitation data of catchments above Fenhe Reservoir 1956 to 2013 and the land and water reservation methods which are implemented recently. It shows that there is a significant decrease of the inter-annual run-off with main and second cycle periods, 23a and 13a respectively. Furthermore, it exists mutation point between 1970 and 1971 through runoff series. As for further analysis of the causes of Fenhe Reservoir runoff changes, it illustrates that the change of precipitation is the main reason the facilitate runoff changes. Also, the land and water reservation methods which are implemented in upstream of Fenhe Reservoir increase water storage capacity of soil, showing it non-ignorable effect to runoff changes. 展开更多
关键词 annual Runoff TREND Cycle Period MUTATION Analysis of the Cause of Runoff Change
下载PDF
Theory of annual runoff evolution under natural-artificial dual mode and case study of Wuding River basin on the middle Yellow River 被引量:8
12
作者 WANG Hao WANG Chengming +2 位作者 WANG Jianhua ZHOU Zuhao CHEN Yiming 《Science China(Technological Sciences)》 SCIE EI CAS 2004年第z1期51-59,共9页
Water cycling process in a river basin becomes more complicated because of the intensified impact by human activities. Study of the law of annual runoff evolution in a river basin is of great significance to quantitat... Water cycling process in a river basin becomes more complicated because of the intensified impact by human activities. Study of the law of annual runoff evolution in a river basin is of great significance to quantitative analysis of the water resources condition in varied environment and prediction of the law of the water resources evolution in the future because year-based time span may best reflect the law of the water resources evolution driven by the nature and human activities in the river basin. This paper advances the theory of annual runoff evolution under natural-artificial dual mode based on the dual mode of the water resources evolution, and the theory is applied for the Wuding River Basin on the middle Yellow River as a case study. A thorough analysis of the precipitation-runoff relationship is made in the case of dynamic variation of ground surface conditions of the Wuding River basin, and the concept of water-soil conservation index area that indicates adoption of various measures for water and soil conservation to reflect ground surface conditions. Furthermore, precipitation-runoff empirical model is developed to reflect dynamic variation of the ground surface conditions of the river basin. The study may lay a solid foundation for the integrated theoretical platform of the law of the water resources evolution in the Yellow River basin and the dual model of the evolution. 展开更多
关键词 annual runoff dual mode water resources variation evolution theory Wuding River.
原文传递
Impacts of water conservancy and soil conservation measures on annual runoff in the Chaohe River Basin during 1961-2005 被引量:9
13
作者 LI Zijun LI Xiubin XU Zhimei 《Journal of Geographical Sciences》 SCIE CSCD 2010年第6期947-960,共14页
Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-K... Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-Kendall test method on the basis of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series contrasting method. The referenced period (1961-1980) that influenced slightly by human activities and the compared period (1981-2005) that influenced significantly by water conservancy and soil conservation measures were identified according to the runoff variation process analysis and abrupt change points detection during 1961-2005 applying double accumulative curve method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage basin are significantly related to human activities. (3) During 1981-1990, 1991-2000, 2001-2005 and 1981-2005, the average annual runoff reduction amounts were 1.15×10^8, 0.28×10^8, 1.10×10^8 and 0.79×10^8 m^3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing effects by water conservancy and soil conservation measures are more prominent in the low water period. 展开更多
关键词 IMPACTS water conservancy and soil conservation measures annual runoff rainfall-runoff empirical statistical model the Chaohe River Basin
原文传递
Climate Change and Its Effect on Annual Runoff in Lijiang Basin-Mt. Yulong Region,China 被引量:4
14
作者 何元庆 蒲焘 +7 位作者 李宗省 朱国锋 王世金 张宁宁 王淑新 辛惠娟 Wilfred H Theakstone 杜建括 《Journal of Earth Science》 SCIE CAS CSCD 2010年第2期137-147,共11页
Based on the meteorological and hydrologic data in the Lijang (丽江) basin from 1979 to 2006, variational trend and characteristics of climate change and its effect on runoff in Yanggong (漾弓) River were examined... Based on the meteorological and hydrologic data in the Lijang (丽江) basin from 1979 to 2006, variational trend and characteristics of climate change and its effect on runoff in Yanggong (漾弓) River were examined in the study. The results show that the temperature have significantly increased in the drainage basin during the past 28 years. The average temperature increased markedly from 1979 to 2006, and the increase of temperature in winter was higher than those in other seasons. The annual precipitation varied with a slightly upward trend in the same period, suggesting that the increase mainly occurred in spring and summer while the decrease occurred in autumn and winter. The streamflow at Yanggong River showed a significant increasing trend. During the four seasons, spring experienced the most significant increase, and autumn experienced the smallest. On the basis of the above study, we found that the increasing trend in runoff was more significant than the increase in precipitation in the study area. That was the synactic results of variation of groundwater, ice-snow meltwater and precipitation caused by global climate change. 展开更多
关键词 temperate glacier climate change annual runoff Lijiang basin.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部